Clinical Microbiology Reviews
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Oxylipins are oxygenated metabolites of fatty acids. Eicosanoids are a subset of oxylipins and include the prostaglandins and leukotrienes, which are potent regulators of host immune responses. Host cells are one source of eicosanoids and oxylipins during infection; however, another potential source of eicosanoids is the pathogen itself. A broad range of pathogenic fungi, protozoa, and helminths produce eicosanoids and other oxylipins by novel synthesis pathways. Why do these organisms produce oxylipins? Accumulating data suggest that phase change and differentiation in these organisms are controlled by oxylipins, including prostaglandins and lipoxygenase products. The precise role of pathogen-derived eicosanoids in pathogenesis remains to be determined, but the potential link between pathogen eicosanoids and the development of TH2 responses in the host is intriguing. Mammalian prostaglandins and leukotrienes have been studied extensively, and these molecules can modulate Th1 versus Th2 immune responses, chemokine production, phagocytosis, lymphocyte proliferation, and leukocyte chemotaxis. Thus, eicosanoids and oxylipins (host or microbe) may be mediators of a direct host-pathogen “cross-talk” that promotes chronic infection and hypersensitivity disease, common features of infection by eukaryotic pathogens.
Flow displacement systems are superior to many other (static) systems for studying microbial adhesion to surfaces because mass transport and prevailing shear conditions can be adequately controlled and notoriously ill-defined slight rinsing steps to remove so-called “loosely adhering organisms” can be avoided. In this review, we present the basic background required to calculate mass transport and shear rates in flow displacement systems, focusing on the parallel plate flow chamber as an example. Critical features in the design of flow displacement systems are discussed, as well as different strategies for data analysis. Finally, selected examples of working with flow displacement systems are given for diverse biomedical applications.
Escherichia coli là vi khuẩn không độc hại chủ yếu trong hệ vi sinh vật của ruột người. Tuy nhiên, một số dòng E. coli đã phát triển khả năng gây bệnh ở đường tiêu hóa, đường tiết niệu hoặc hệ thần kinh trung ương ngay cả ở những người khỏe mạnh nhất. Các dòng E. coli gây tiêu chảy có thể được chia thành ít nhất sáu loại khác nhau với các cơ chế gây bệnh đặc trưng tương ứng. Những vi khuẩn này có lẽ đại diện cho nguyên nhân phổ biến nhất gây tiêu chảy ở trẻ em trên toàn thế giới. Nhiều hội chứng lâm sàng khác nhau đi kèm với các nhiễm trùng do các loại E. coli gây tiêu chảy, bao gồm tiêu chảy du lịch (E. coli sinh độc tố ruột), viêm đại tràng xuất huyết và hội chứng urê huyết tán (E. coli sinh độc tố ruột xuất huyết), tiêu chảy kéo dài (E. coli tích tụ trong ruột), và tiêu chảy nước ở trẻ nhỏ (E. coli gây bệnh đường ruột). Bài báo này thảo luận về mức độ hiểu biết hiện tại về bệnh sinh của các dòng E. coli gây tiêu chảy và mô tả cách mà các cơ chế gây bệnh của chúng liên quan đến các biểu hiện lâm sàng, cách tiếp cận chẩn đoán và nghiên cứu dịch tễ học của những mầm bệnh quan trọng này.
The majority of dermal wounds are colonized with aerobic and anaerobic microorganisms that originate predominantly from mucosal surfaces such as those of the oral cavity and gut. The role and significance of microorganisms in wound healing has been debated for many years. While some experts consider the microbial density to be critical in predicting wound healing and infection, others consider the types of microorganisms to be of greater importance. However, these and other factors such as microbial synergy, the host immune response, and the quality of tissue must be considered collectively in assessing the probability of infection. Debate also exists regarding the value of wound sampling, the types of wounds that should be sampled, and the sampling technique required to generate the most meaningful data. In the laboratory, consideration must be given to the relevance of culturing polymicrobial specimens, the value in identifying one or more microorganisms, and the microorganisms that should be assayed for antibiotic susceptibility. Although appropriate systemic antibiotics are essential for the treatment of deteriorating, clinically infected wounds, debate exists regarding the relevance and use of antibiotics (systemic or topical) and antiseptics (topical) in the treatment of nonhealing wounds that have no clinical signs of infection. In providing a detailed analysis of wound microbiology, together with current opinion and controversies regarding wound assessment and treatment, this review has attempted to capture and address microbiological aspects that are critical to the successful management of microorganisms in wounds.
The most common yeast species that act as agents of human disease are Candida albicans, Candida tropicalis, Candida glabrata, Candida parapsilosis, and Cryptococcus neoformans. The incidence of infections by other yeasts has increased during the past decade. The most evident emerging pathogens are Malassezia furfur, Trichosporon beigelii, Rhodotorula species, Hansenula anomala, Candida lusitaniae, and Candida krusei. Organisms once considered environmental contaminants or only industrially important, such as Candida utilis and Candida lipolytica, have now been implicated as agents of fungemia, onychomycosis, and systemic disease. The unusual yeasts primarily infect immunocompromised patients, newborns, and the elderly. The role of central venous catheter removal and antifungal therapy in patient management is controversial. The antibiograms of the unusual yeasts range from resistant to the most recent azoles and amphotericin B to highly susceptible to all antifungal agents. Current routine methods for yeast identification may be insufficient to identify the unusual yeasts within 2 days after isolation. The recognition of unusual yeasts as agents of sometimes life-threatening infection and their unpredictable antifungal susceptibilities increase the burden on the clinical mycology laboratory to pursue complete species identification and MIC determinations. Given the current and evolving medical practices for management of seriously ill patients, further evaluations of the clinically important data about these yeasts are needed.
Health care-associated infections (HAIs) have become more common as medical care has grown more complex and patients have become more complicated. HAIs are associated with significant morbidity, mortality, and cost. Growing rates of HAIs alongside evidence suggesting that active surveillance and infection control practices can prevent HAIs led to the development of hospital epidemiology and infection control programs. The role for infection control programs has grown and continues to grow as rates of antimicrobial resistance rise and HAIs lead to increasing risks to patients and expanding health care costs. In this review, we summarize the history of the development of hospital epidemiology and infection control, common HAIs and the pathogens causing them, and the structure and role of a hospital epidemiology and infection control program.
The discovery of novel small-molecule antibacterial drugs has been stalled for many years. The purpose of this review is to underscore and illustrate those scientific problems unique to the discovery and optimization of novel antibacterial agents that have adversely affected the output of the effort. The major challenges fall into two areas: (i) proper target selection, particularly the necessity of pursuing molecular targets that are not prone to rapid resistance development, and (ii) improvement of chemical libraries to overcome limitations of diversity, especially that which is necessary to overcome barriers to bacterial entry and proclivity to be effluxed, especially in Gram-negative organisms. Failure to address these problems has led to a great deal of misdirected effort.
Hosts and bacteria have coevolved over millions of years, during which pathogenic bacteria have modified their virulence mechanisms to adapt to host defense systems. Although the spread of pathogens has been hindered by the discovery and widespread use of antimicrobial agents, antimicrobial resistance has increased globally. The emergence of resistant bacteria has accelerated in recent years, mainly as a result of increased selective pressure. However, although antimicrobial resistance and bacterial virulence have developed on different timescales, they share some common characteristics. This review considers how bacterial virulence and fitness are affected by antibiotic resistance and also how the relationship between virulence and resistance is affected by different genetic mechanisms (e.g., coselection and compensatory mutations) and by the most prevalent global responses. The interplay between these factors and the associated biological costs depend on four main factors: the bacterial species involved, virulence and resistance mechanisms, the ecological niche, and the host. The development of new strategies involving new antimicrobials or nonantimicrobial compounds and of novel diagnostic methods that focus on high-risk clones and rapid tests to detect virulence markers may help to resolve the increasing problem of the association between virulence and resistance, which is becoming more beneficial for pathogenic bacteria.
Recent taxonomic advances have now implicated several different Vibrio species as human pathogens. While the most common clinical presentation of Vibrio infection continues to be gastroenteritis, an increasing number of extraintestinal infections are being reported, particularly in immunocompromised individuals. Detection of Vibrio infections requires a good clinical history and the use of appropriate isolation and identification procedures by the laboratory to confirm illnesses attributed to Vibrio species. Except for Vibrio cholerae O1 and Vibrio parahaemolyticus, there is little direct evidence linking the production of a myriad of cell-associated or extracellular factors produced by each species with human disease and pathogenesis. Many questions regarding pathogenic Vibrio species remain unanswered, including their frequency and distribution in environmental specimens (water, shellfish), infective doses, virulence potential of individual isolates, and markers associated with such strains.
Enteropathogenic
- 1
- 2
- 3
- 4
- 5
- 6
- 10