Physiological, molecular, and genetic mechanism of action of the biostimulant Quantis™ for increased thermotolerance of potato (Solanum tuberosum L.)Chemical and Biological Technologies in Agriculture - Tập 11 Số 1
Dasuni Jayaweera, Charlene Dambire, Dimitra Angelopoulou, Sergi Munné‐Bosch, Ranjan Swarup, Rumiana V. Ray
Abstract
Background
Raising global temperatures limit crop productivity and new strategies are needed to improve the resilience of thermosensitive crops such as potato (Solanum tuberosum L.). Biostimulants are emerging as potential crop protection products against environmental stress, however their mechanism of action remains largely unknown, hindering their wider adoption. We used comprehensive physiological, molecular, and mass spectrometry approaches to develop understanding of the mechanism of plant thermotolerance exerted by the biostimulant, Quantis™, under heat stress. Using orthologues gene mutations in Arabidopsis thaliana we report heat-defence genes, modified by Quantis™, which were also investigated for potential overlapping functions in biotic stress defence to Sclerotinia sclerotiorum and Rhizoctonia solani.
Results
Quantis™ enhanced PSII photochemical efficiency and decreased thermal dissipation of potato grown under heat stress. These effects were associated with upregulation of genes with antioxidant function, including PR10, flavonoid 3′‐hydroxylase and β-glucosidases, and modulation of abscisic acid (ABA) and cytokinin (CK) activity in leaves by Quantis™. The biostimulant modulated the expression of the heat-defence genes, PEN1, PR4 or MEE59, with functions in leaf photoprotection and root thermal protection, but with no overlapping function in biotic stress defence. Protective root growth under heat stress, following the biostimulant application, was correlated with enhanced CK signalling in roots. Increased endogenous concentrations of ABA and CK in potato leaves and significant upregulation of StFKF1 were consistent with tuberisation promoting effects. Quantis™ application resulted in 4% tuber weight increase and 40% larger tuber size thus mitigating negative effects of heat stress on tuber growth.
Conclusions
Quantis™ application prior to heat stress effectively primed heat tolerance responses and alleviated temperature stress of S. tuberosum L. and A. thaliana by modulating the expression and function of PR4 and MEE59 and by regulating CK activity above and below ground, indicating that the mechanism of action of the biostimulant is conserved, and will be effective in many plant species. Thus, a biostimulant application targeting the most susceptible crop developmental stages to heat disorders can be effectively integrated within future agronomy practices to mitigate losses in other thermosensitive crops.
Graphical Abstract
Biological and synthetic approaches to inhibiting nitrification in non-tilled Mediterranean soilsChemical and Biological Technologies in Agriculture - Tập 8 - Trang 1-12 - 2021
Adrián Bozal-Leorri, Mario Corrochano-Monsalve, Luis Miguel Arregui, Pedro M. Aparicio-Tejo, Carmen González-Murua
The increasing demand for food production has led to a tenfold increase in nitrogen (N) fertilizer use since the Green Revolution. Nowadays, agricultural soils have been turned into high-nitrifying environments that increase N pollution. To decrease N losses, synthetic nitrification inhibitors (SNIs) such as 3,4-dimethylpyrazole phosphate (DMPP) have been developed. However, SNIs are not widely adopted by farmers due to their biologically limited stability and soil mobility. On the other hand, allelopathic substances from root exudates from crops such as sorghum are known for their activity as biological nitrification inhibitors (BNIs). These substances are released directly into the rhizosphere. Nevertheless, BNI exudation could be modified or even suppressed if crop development is affected. In this work, we compare the performance of biological (sorghum crop) and synthetic (DMPP) nitrification inhibitors in field conditions. Sorghum crop BNIs and DMPP prevented an increase in the abundance of ammonia-oxidizing bacteria (AOB) without affecting the total bacterial abundance. Both nitrification inhibitors maintained similar soil NH4+ content, but at 30 days post-fertilization (DPF), the sorghum BNIs resulted in higher soil NO3− content than DMPP. Even so, these inhibitors managed to reduce 64% and 96%, respectively, of the NO3−-N/NH4+-N ratio compared to the control treatment. Similar to soil mineral N, there were no differences in leaf δ15N values between the two nitrification inhibitors, yet at 30 DPF, δ15N values from sorghum BNI were more positive than those of DMPP. N2O emissions from DMPP-treated soil were low throughout the experiment. Nevertheless, while sorghum BNIs also maintained low N2O emissions, they were associated with a substantial N2O emission peak at 3 DPF that lasted until 7 DPF. Our results indicate that while sorghum root exudates can reduce nitrification in field soil, even at the same efficiency as DMPP for a certain amount of time, they are not able to prevent the N pollution derived from N fertilization as DMPP does during the entire experiment.
Exogenous Glutathione enhances tolerance of the potato (Solanum tuberosum L.) to cadmium stress by regulating the biosynthesis of phenylpropanoid and the signal transduction of plant hormonesChemical and Biological Technologies in Agriculture - Tập 10 - Trang 1-13 - 2023
Yichen Kang, Yanhong Yao, Yuhui Liu, Mingfu Shi, Weina Zhang, Ruyan Zhang, Hong Li, Shuhao Qin, Xinyu Yang
Cadmium (Cd) pollution has brought harm to the growth and development of potato. Glutathione (GSH) is an important antioxidant that may play an active role in the response of a potato to Cd stress. However, how GSH influences the effect of Cd on potatoes is unknown. In this study, we investigated the effects of exogenous GSH on the phenylpropanoid biosynthesis pathway and plant hormone signal transduction pathway in potatoes under Cd stress to explore new ideas for how potatoes respond to Cd stress. We cultured 21-day-old 'Atlantic’ plantlets in Murashige and Skoog (MS) medium supplemented with 500 μmol/L CdCl2 or 500 μmol/L CdCl2 + 400 μmol/L GSH. We then investigated the activities of key enzymes in the phenylpropanoid biosynthesis pathway, hormone levels, and the expression levels of related genes at different time points. Analysis showed that 96 h of treatment with glutathione led to an increase in the expression levels of genes encoding phenylalanine ammonia-lyase (PAL), cinnamyl alcohol dehydrogenase (CAD) and peroxidase (POD); an increase in the enzymic activities of PAL, CAD and POD; and an increase in the content of lignin. The content of lignin was positively correlated with the expression levels of several genes (PAL: PG0031457, CAD: PG0005359, POD: PG0011640 and PG0015106). In addition, the levels of Salicylic acid (SA) and Jasmonic acid (JA) increased significantly, the expression levels of the genes encoding transcription factor TGA (PG2023696), pathogenesis-related protein 1 (PR1) (PG0005111), and the transcription inhibitor Aux/IAA (PG0006093) all increased while the expression levels of jasmonate ZIM domain-containing protein (JAZ) (PG0004367), auxin influx carrier (AUX) (PG0006550) and auxin response factor (ARF) (PG0005794) all decreased. We also observed a reduction in the content of IAA. Exogenous GSH improved the tolerance of potato, Atlantic cv. to Cd stress by regulating the phenylpropanoid biosynthesis pathway and the plant hormone signal transduction pathway.
Advancing the impact of plant biostimulants to sustainable agriculture through nanotechnologiesChemical and Biological Technologies in Agriculture -
Pietro Magnabosco, Antonio Masi, Ravi Shukla, Vipul Bansal, Paolo Carletti
AbstractNanomaterials and plant biostimulants are attracting significant attention for their potential applications in the agri-food sector. These efforts have mostly focused on the independent applicability of these two emerging fields to achieve improved agricultural outcomes. However, an even larger impact can be created if the emerging fields of nanotechnology and biostimulant technology are combined. This transdisciplinary review combines two diverse fields to highlight the potential role of nanotechnologies in advancing the impact of plant biostimulants for the sustainable production of high-quality food. The review first explains the key concepts of nanotechnology in a tutorial style to offer the agri-food research community an improved understanding of the potential of nanotechnology. The review then dives deeply into plant biostimulants which are substances or microorganisms or complex mixtures capable of improving plant nutrition and growth, directly influencing the aspects relevant to food quality, safety, and security. The review presents a convincing case that combining nanomaterials with biostimulants provides a promising sustainable answer against food insecurity for the near future. Sustainability is central to our discussions, which is exemplified by cases, such as the production of plant biostimulants from waste material, thus contributing to a circular economy. The review also identifies promising avenues to utilize nanotechnology for improving the value of biostimulants. Strategies such as nanoencapsulation are proposed to produce nano-biostimulants that could act synergistically to enhance food quality while offering a solution to the increasing challenge of food production while respecting the environment.
Graphical Abstract
Application of melatonin-mediated modulation of drought tolerance by regulating photosynthetic efficiency, chloroplast ultrastructure, and endogenous hormones in maizeChemical and Biological Technologies in Agriculture - Tập 9 - Trang 1-14 - 2022
Shakeel Ahmad, Guo Yun Wang, Ihsan Muhammad, Saqib Farooq, Muhammad Kamran, Irshad Ahmad, Muhammad Zeeshan, Tehseen Javed, Saif Ullah, Jing Hua Huang, Xun Bo Zhou
Melatonin played an essential role in numerous vital life processes of animals and captured the interests of plant biologists because of its potent role in plants as well. As far as its possible contribution to photoperiodic processes, melatonin is believed to act as a growth regulator and a direct free radical scavenger/indirect antioxidant. The objective of this study to identify a precise melatonin concentration for a particular application method to improve plant growth requires identification and clarification. This work establishes unique findings by optimizing melatonin concentration in alleviating the detrimental effects of drought stress in maize. Maize plants were subjected to drought stress (40–45% FC) after treatments of melatonin soil drenching at different concentrations (50, 100, and 150 µM) to consider the changes of growth attribute, chlorophyll contents, photosynthetic rate, relative water content (RWC), chloroplast ultrastructure, endogenous hormonal mechanism, and grain yield. Our results showed that the application of melatonin treatments remarkably improved the plant growth attributes, chlorophyll contents, photosynthetic rate, RWC, hormonal mechanism, and grain yield plant−1 under drought conditions at a variable rate. Our current findings hereby confirmed the mitigating potential of melatonin application 100 µM for drought stress by maintaining plant growth, hormone content, and grain yield of maize. We conclude that the application of melatonin to maize is effective in reducing drought stress tolerance.
Milk yield and composition, body condition, rumen characteristics, and blood metabolites of dairy cows fed diet supplemented with palm oilChemical and Biological Technologies in Agriculture - Tập 2 - Trang 1-5 - 2015
Danijela Kirovski, Bojan Blond, Marko Katić, Radmila Marković, Dragan Šefer
An addition of rumen-protected fat to the diet of cows may limit negative energy balance and/or shorten its duration, leading to increased milk production with reduced risk of metabolic disorders in dairy cows. The aim of the study was to test the effect of rumen-inert fat supplement of palm oil on milk production, milk composition, rumen characteristics, and metabolic variables of early lactating dairy cows. For this purpose, 24 Holstein-Friesian cows were divided into two equal groups and fed a corn silage-based diet, without palm oil supplementation (control) or with 300 g palm oil (Palm Fat 99, Noack & Co. GmbH, Vienna, Austria) per cow for 8 weeks starting from day 30 after parturition. Milk, rumen, and blood samples were taken three times during experiment at days 30, 58, and 86 of lactation. Body condition scores of cows were determined in the same time periods. Milk yields were measured at the morning and evening milking (600 and 1800). Milk samples were analyzed for milk fat and milk protein content. Rumen content was tested for electrochemical reaction. A native slide was prepared for microscopical examination of the rumen protozoa motility that was numerically estimated. Protozoa were counted in whole rumen contents by light microscopy. Blood samples were tested for total protein, albumin, urea, tryglicerides, cholesterol, total bilirubin, beta-hydroxybutyrate, Ca, and P. Compared with the control, palm oil supplementation resulted in an increase of the average milk yield and milk fat content. The loss in body condition was significantly lower in the group fed palm oil than in the control group. Rumen pH, total number, and motility of protozoa in the group fed palm oil were significantly higher than those in the control group. Palm oil supplementation did not influence blood metabolite concentrations except for urea and glucose which were significantly lower and Ca and cholesterol which were significantly higher in the palm oil-supplemented group. Our results indicate that supplementation with palm oil in weeks 4 to 12 postpartum spared postpartum body weight loss, increased milk yield and milk fat content, and had positive effects on rumen characteristics.
Assessing the potential of biochar aged by humic substances to enhance plant growth and soil biological activityChemical and Biological Technologies in Agriculture - Tập 8 - Trang 1-12 - 2021
Tereza Hammerschmiedt, Jiri Holatko, Vaclav Pecina, Dalibor Huska, Oldrich Latal, Antonin Kintl, Maja Radziemska, Sadiq Muhammad, Zygmunt M. Gusiatin, Martina Kolackova, Muhammad Nasir, Tivadar Baltazar, Niaz Ahmed, Martin Brtnicky
Soil carbon-rich organic amendments (biochar, humic substances) may improve the quality and fertility of arable soil. Their co-application can additively enhance the beneficial effect on soil. Hypothetically, the pre-treatment of biochar, by aging via soaking in a solution of commercially available humic substances, could result in synergism, which may exceed the benefit from simple co-application of both amendments to the soil. Therefore, the aim of this study was to investigate the impact of biochar, humic substances, the combination of both, and the impact of biochar aged by humic substances solution on soil microbial activities and plant growth in a short-term pot experiment with lettuce. The aging of biochar decreased the C:N ratio as compared to non-activated biochar. The co-application of biochar and humic substances into the soil resulted in the highest microbial biomass carbon and respiration activity. The majority of enzyme activities (β-glucosidase, arylsulfatase, N-acetyl-β-d-glucosaminidase, phosphatase) were the highest in humic substances-amended soil. The application of humic substances and biochar with humic substances seemed to stimulate microbial growth and activity followed by the competition of microflora for nutrients with plants, whereas the aged biochar behaved differently. The plants treated by aged biochar achieved the highest values of dry aboveground and root biomass of all variants. However, the assumed rapid uptake of nutrients by plants resulted in lower nutrient availability for microflora, and a decline in microbial viability. Based on this study, the positive effect of co-applied humic substances and biochar on soil fertility, quality, and health can be concluded. The usability of biochar aging by humic solution requires further study.
Metabolomics reveals the effects producing region and fermentation stage on substance conversion in cigar tobacco leafChemical and Biological Technologies in Agriculture - Tập 10 Số 1 - Trang 1-22 - 2023
Zhang, Guanghai, Yao, Heng, Zhao, Gaokun, Wu, Yuping, Xia, Huachan, Li, Yongping, Kong, Guanghui
The quality of cigar tobacco leaves was closely related to fermentation. To investigate the substance changes in cigar tobacco leaves during their fermentation, metabolomics was determined at different fermentation stages. In this study, the metabolic profile among different regions and fermentation periods of cigar tobacco leaf were evaluated. A total of 1103 metabolites were identified in cigar tobacco leaf samples. A total of 293, 105 and 199 metabolites showed differential accumulation in the cigar tobacco leaf among different regions (PEF0 vs. LCF0, PEF0 vs. DHF0, PEF0 vs. YXF0) and 216, 242, 220, 227 and 198 metabolites showed differential accumulation in the different fermentation (LCF0 vs. LCF1, LCF0 vs. LCF2, LCF0 vs. LCF3, LCF0 vs. LCF4, LCF0 vs. LCF5). The main upregulated compounds were flavonoids, phenolic acids and lignans and coumarins, and the main downregulated compounds were organic acids, phenolic acids and amino acids and derivatives in the fermentation comparison group. These results provide valuable information for accurately grasping the end time of fermentation and improve efficiency of cigar tobacco leaf fermentation.