Cell Communication and Signaling

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
FZD5 prevents epithelial-mesenchymal transition in gastric cancer
Cell Communication and Signaling - - 2021
Dan Dong, Lei Na, Kailing Zhou, Zhuo Wang, Yu Sun, Qianqian Zheng, Jian Gao, Chenghai Zhao, Wei Wang
Frizzled (FZD) proteins function as receptors for WNT ligands. Members in FZD family including FZD2, FZD4, FZD7, FZD8 and FZD10 have been demonstrated to mediate cancer cell epithelial-mesenchymal transition (EMT). CCLE and TCGA databases were interrogated to reveal the association of FZD5 with EMT. EMT was analyzed by investigating the alterations in CDH1 (E-cadherin), VIM (Vimentin) and ZEB1 expression, cell migration and cell morphology. Transcriptional modulation was determined by ChIP in combination with Real-time PCR. Survival was analyzed by Kaplan–Meier method. In contrast to other FZDs, FZD5 was identified to prevent EMT in gastric cancer. FZD5 maintains epithelial-like phenotype and is negatively modulated by transcription factors SNAI2 and TEAD1. Epithelial-specific factor ELF3 is a downstream effecter, and protein kinase C (PKC) links FZD5 to ELF3. ELF3 represses ZEB1 expression, further guarding against EMT. Moreover, FZD5 signaling requires its co-receptor LRP5 and WNT7B is a putative ligand for FZD5. FZD5 and ELF3 are associated with longer survival, whereas SNAI2 and TEAD1 are associated with shorter survival. Taken together, FZD5-ELF3 signaling blocks EMT, and plays a potential tumor-suppressing role in gastric cancer.
Drug induced modulation of T cell activation and differentiation in atopic dermatitis patients
Cell Communication and Signaling - Tập 7 - Trang 1-1 - 2009
C Brandt, A Radbruch, M Worm, R Baumgrass
Helicobacter pylori virulence factor CagA promotes tumorigenesis of gastric cancer via multiple signaling pathways
Cell Communication and Signaling - Tập 13 - Trang 1-13 - 2015
Xin Yong, Bo Tang, Bo-Sheng Li, Rui Xie, Chang-Jiang Hu, Gang Luo, Yong Qin, Hui Dong, Shi-Ming Yang
Helicobacter pylori (H. pylori) infection is strongly associated with the development of gastric diseases but also with several extragastric diseases. The clinical outcomes caused by H. pylori infection are considered to be associated with a complex combination of host susceptibility, environmental factors and bacterial isolates. Infections involving H. pylori strains that possess the virulence factor CagA have a worse clinical outcome than those involving CagA-negative strains. It is remarkable that CagA-positive H. pylori increase the risk for gastric cancer over the risk associated with H. pylori infection alone. CagA behaves as a bacterial oncoprotein playing a key role in H. pylori-induced gastric cancer. Activation of oncogenic signaling pathways and inactivation of tumor suppressor pathways are two crucial events in the development of gastric cancer. CagA shows the ability to affect the expression or function of vital protein in oncogenic or tumor suppressor signaling pathways via several molecular mechanisms, such as direct binding or interaction, phosphorylation of vital signaling proteins and methylation of tumor suppressor genes. As a result, CagA continuously dysregulates of these signaling pathways and promotes tumorigenesis. Recent research has enriched our understanding of how CagA effects on these signaling pathways. This review summarizes the results of the most relevant studies, discusses the complex molecular mechanism involved and attempts to delineate the entire signaling pathway.
CXXC5 mitigates P. gingivalis-inhibited cementogenesis by influencing mitochondrial biogenesis
Cell Communication and Signaling - Tập 22 - Trang 1-12 - 2024
Li Ma, Huiyi Wang, Xin Huang, Hantao Huang, Yan Peng, Heyu Liu, Xiaoxuan Wang, Zhengguo Cao
Cementoblasts on the tooth-root surface are responsible for cementum formation (cementogenesis) and sensitive to Porphyromonas gingivalis stimulation. We have previously proved transcription factor CXXC-type zinc finger protein 5 (CXXC5) participates in cementogenesis. Here, we aimed to elucidate the mechanism in which CXXC5 regulates P. gingivalis-inhibited cementogenesis from the perspective of mitochondrial biogenesis. In vivo, periapical lesions were induced in mouse mandibular first molars by pulp exposure, and P. gingivalis was applied into the root canals. In vitro, a cementoblast cell line (OCCM-30) was induced cementogenesis and submitted for RNA sequencing. These cells were co-cultured with P. gingivalis and examined for osteogenic ability and mitochondrial biogenesis. Cells with stable CXXC5 overexpression were constructed by lentivirus transduction, and PGC-1α (central inducer of mitochondrial biogenesis) was down-regulated by siRNA transfection. Periapical lesions were enlarged, and PGC-1α expression was reduced by P. gingivalis treatment. Upon apical inflammation, Cxxc5 expression decreased with Il-6 upregulation. RNA sequencing showed enhanced expression of osteogenic markers, Cxxc5, and mitochondrial biogenesis markers during cementogenesis. P. gingivalis suppressed osteogenic capacities, mitochondrial biogenesis markers, mitochondrial (mt)DNA copy number, and cellular ATP content of cementoblasts, whereas CXXC5 overexpression rescued these effects. PGC-1α knockdown dramatically impaired cementoblast differentiation, confirming the role of mitochondrial biogenesis on cementogenesis. CXXC5 is a P. gingivalis-sensitive transcription factor that positively regulates cementogenesis by influencing PGC-1α-dependent mitochondrial biogenesis.
PVT1 signals an androgen-dependent transcriptional repression program in prostate cancer cells and a set of the repressed genes predicts high-risk tumors
Cell Communication and Signaling - Tập 19 - Trang 1-16 - 2021
Alexandre Videira, Felipe C. Beckedorff, Lucas F. daSilva, Sergio Verjovski-Almeida
Androgen receptor (AR) and polycomb repressive complex 2 (PRC2) are known to co-occupy the loci of genes that are downregulated by androgen-stimulus. Long intergenic non-coding RNA (lincRNA) PVT1 is an overexpressed oncogene that is associated with AR in LNCaP prostate cancer cells, and with PRC2 in HeLa and many other types of cancer cells. The possible involvement of PVT1 in mediating androgen-induced gene expression downregulation in prostate cancer has not been explored. LNCaP cell line was used. Native RNA-binding-protein immunoprecipitation with anti-AR or anti-EZH2 was followed by RT-qPCR with primers for PVT1. Knockdown of PVT1 with specific GapmeRs (or a control with scrambled GapmeR) was followed by differentially expressed genes (DEGs) determination with Agilent microarrays and with Significance Analysis of Microarrays statistical test. DEGs were tested as a tumor risk classifier with a machine learning Random Forest algorithm run with gene expression data from all TCGA-PRAD (prostate adenocarcinoma) tumors as input. ChIP-qPCR was performed for histone marks at the promoter of one DEG. We show that PVT1 knockdown in androgen-stimulated LNCaP cells caused statistically significant expression upregulation/downregulation of hundreds of genes. Interestingly, PVT1 knockdown caused upregulation of 160 genes that were repressed by androgen, including a significantly enriched set of tumor suppressor genes, and among them FAS, NOV/CCN3, BMF, HRK, IFIT2, AJUBA, DRAIC and TNFRSF21. A 121-gene-set (out of the 160) was able to correctly predict the classification of all 293 intermediate- and high-risk TCGA-PRAD tumors, with a mean ROC area under the curve AUC = 0.89 ± 0.04, pointing to the relevance of these genes in cancer aggressiveness. Native RIP-qPCR in LNCaP showed that PVT1 was associated with EZH2, a component of PRC2. PVT1 knockdown followed by ChIP-qPCR showed significant epigenetic remodeling at the enhancer and promoter regions of tumor suppressor gene NOV, one of the androgen-repressed genes that were upregulated upon PVT1 silencing. Overall, we provide first evidence that PVT1 was involved in signaling a genome-wide androgen-dependent transcriptional repressive program of tumor suppressor protein-coding genes in prostate cancer cells. Identification of transcriptional inhibition of tumor suppressor genes by PVT1 highlights the pathway to the investigation of mechanisms that lie behind the oncogenic role of PVT1 in cancer.
Cancer/testis antigen 45 is expressed in a nuclear speckles-like pattern in human tumor cell lines
Cell Communication and Signaling - Tập 7 - Trang 1-1 - 2009
HJ Heidebrecht, ML Kruse, O Janßen, R Parwaresch
Immune checkpoint regulator PD-L1 expression on tumor cells by contacting CD11b positive bone marrow derived stromal cells
Cell Communication and Signaling - Tập 13 - Trang 1-12 - 2015
Hyangsoon Noh, Jiemiao Hu, Xiaohong Wang, Xueqing Xia, Arun Satelli, Shulin Li
Expression of programmed cell death ligand 1 (PD-L1) is an important process by which tumor cells suppress antitumor immunity in the tumor microenvironment. Bone marrow (BM)–derived immune cells are an important component of the tumor microenvironment. However, the link between PD-L1 induction on tumor cells and communication with BM cells is unknown. This study demonstrates that BM cells have a direct effect in inducing PD-L1 expression on tumor cells, which contributes to the tumor cells’ drug resistance. This novel discovery was revealed using a co-incubation system with BM cells and tumor cells. BM cells from wild-type C57BL6 mice and the immune-deficient mouse strains B-cell−/−, CD28−/−, perforin−/−, and Rag2−/− but not CD11b−/− dramatically increased the expression of tumor cell surface PD-L1. This PD-L1 induction was dependent on CD11b-positive BM cells through direct contact with tumor cells. Furthermore, p38 signaling was activated in tumor cells after co-incubation with BM cells, whereas the expression of PD-L1 was remarkably decreased after co-culture of cells treated with a p38 inhibitor. The increase in PD-L1 induced by BM cell co-culture protected tumor cells from drug-induced apoptosis. PD-L1 expression is increased on tumor cells by direct contact with BM-derived CD11b-positive cells through the p38 signaling pathway. PD-L1 may play an important role in drug resistance, which often causes failure of the antitumor response.
Serine phosphorylation regulates paxillin turnover during cell migration
Cell Communication and Signaling - Tập 4 - Trang 1-12 - 2006
Nancy Abou Zeid, Ana-Maria Vallés, Brigitte Boyer
Paxillin acts as an adaptor protein that localizes to focal adhesion. This protein is regulated during cell migration by phosphorylation on tyrosine, serine and threonine residues. Most of these phosphorylations have been implicated in the regulation of different steps of cell migration. The two major phosphorylation sites of paxillin in response to adhesion to an extracellular matrix are serines 188 and 190. However, the function of this phosphorylation event remains unknown. The purpose of this work was to determine the role of paxillin phosphorylation on residues S188 and S190 in the regulation of cell migration. We used NBT-II epithelial cells that can be induced to migrate when plated on collagen. To examine the role of paxillin serines 188/190 in cell migration, we constructed an EGFP-tagged paxillin mutant in which S188/S190 were mutated into unphosphorylatable alanine residues. We provide evidence that paxillin is regulated by proteasomal degradation following polyubiquitylation of the protein. During active cell migration on collagen, paxillin is protected from proteasome-dependent degradation. We demonstrate that phosphorylation of serines 188/190 is necessary for the protective effect of collagen. In an effort to understand the physiological relevance of paxillin protection from degradation, we show that cells expressing the paxillin S188/190A interfering mutant spread less, have reduced protrusive activity but migrate more actively. Our data demonstrate for the first time that serine-regulated degradation of paxillin plays a key role in the modulation of membrane dynamics and consequently, in the control of cell motility.
Correction: PSF functions as a repressor of hypoxia-induced angiogenesis by promoting mitochondrial function
Cell Communication and Signaling - Tập 21 - Trang 1-2 - 2023
Lijie Dong, Wenbo Li, Tingting Lin, Boshi Liu, Yaru Hong, Xiaomin Zhang, Xiaorong Li
7-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells
Cell Communication and Signaling - Tập 2 - Trang 1-10 - 2004
Henrique Girão, Steve Catarino, Paulo Pereira
Connexin43 (Cx43) is an integral membrane protein that forms intercellular channels called gap junctions. Intercellular communication in the eye lens relies on an extensive network of gap junctions essential for the maintenance of lens transparency. The association of Cx43 with cholesterol enriched lipid raft domains was recently demonstrated. The objective of this study is to assess if products of cholesterol oxidation (oxysterols) affect gap junction intercellular communication (GJIC). Primary cultures of lens epithelial cells (LEC) were incubated with 7-ketocholesterol (7-Keto), 25-hydroxycholesterol (25-OH) or cholesterol and the subcellular distribution of Cx43 was evaluated by immunofluorescence confocal microscopy. The levels of Cx43 present in gap junction plaques were assessed by its insolubility in Triton X-100 and quantified by western blotting. The stability of Cx43 at the plasma membrane following incubation with oxysterols was evaluated by biotinylation of cell surface proteins. Gap junction intercellular communication was evaluated by transfer of the dye Lucifer yellow. The results obtained showed that 7-keto induces an accumulation of Cx43 at the plasma membrane and an increase in intercellular communication through gap junction. However, incubation with cholesterol or 25-OH did not lead to significant alterations on subcellular distribution of Cx43 nor in intercellular communication. Data further suggests that increased intercellular communication results from increased stability of Cx43 at the plasma membrane, presumably forming functional gap-junctions, as suggested by decreased solubility of Cx43 in 1% Triton X-100. The increased stability of Cx43 at the plasma membrane seems to be specific and not related to disruption of endocytic pathway, as demonstrated by dextran uptake. Results demonstrate, for the first time, that 7-keto induces an increase in gap junction intercellular communication, that is most likely due to an increased stability of protein at the plasma membrane and to increased abundance of Cx43 assembled in gap junction plaques.
Tổng số: 1,350   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10