A transwell assay that excludes exosomes for assessment of tunneling nanotube-mediated intercellular communication

Cell Communication and Signaling - Tập 15 - Trang 1-16 - 2017
Venugopal Thayanithy1,2, Patrick O’Hare1, Phillip Wong1, Xianda Zhao3, Clifford J. Steer4,5, Subbaya Subramanian3, Emil Lou1,6
1Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, USA
2Present Address: Molecular Diagnostics Laboratory, University of Minnesota Medical Center, Minneapolis, USA
3Department of Surgery, University of Minnesota, Minneapolis, USA
4Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, USA
5Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, USA
6Graduate Faculty, Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, USA

Tóm tắt

Tunneling nanotubes (TNTs) are naturally-occurring filamentous actin-based membranous extensions that form across a wide spectrum of mammalian cell types to facilitate long-range intercellular communication. Valid assays are needed to accurately assess the downstream effects of TNT-mediated transfer of cellular signals in vitro. We recently reported a modified transwell assay system designed to test the effects of intercellular transfer of a therapeutic oncolytic virus, and viral-activated drugs, between cells via TNTs. The objective of the current study was to demonstrate validation of this in vitro approach as a new method for effectively excluding diffusible forms of long- and close-range intercellular transfer of intracytoplasmic cargo, including exosomes/microvesicles and gap junctions in order to isolate TNT-selective cell communication. We designed several steps to effectively reduce or eliminate diffusion and long-range transfer via these extracellular vesicles, and used Nanoparticle Tracking Analysis to quantify exosomes following implementation of these steps. The experimental approach outlined here effectively reduced exosome trafficking by >95%; further use of heparin to block exosome uptake by putative recipient cells further impeded transfer of these extracellular vesicles. This validated assay incorporates several steps that can be taken to quantifiably control for extracellular vesicles in order to perform studies focused on TNT-selective communication.

Tài liệu tham khảo

Biran A, et al. Senescent cells communicate via intercellular protein transfer. Genes Dev. 2015;29:791–802. doi:10.1101/gad.259341.115. Connor Y, et al. Physical nanoscale conduit-mediated communication between tumour cells and the endothelium modulates endothelial phenotype. Nat Commun. 2015;6:8671. doi:10.1038/ncomms9671. Costanzo M, et al. Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J Cell Sci. 2013;126:3678–85. doi:10.1242/jcs.126086. Gousset K, et al. Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol. 2009;11:328–36. doi:10.1038/ncb1841. Langevin C, Gousset K, Costanzo M, Richard-Le Goff O, Zurzolo C. Characterization of the role of dendritic cells in prion transfer to primary neurons. Biochem J. 2010;431:189–98. doi:10.1042/BJ20100698. Martin N, et al. Virological synapse-mediated spread of human immunodeficiency virus type 1 between T cells is sensitive to entry inhibition. J Virol. 2010;84:3516–27. doi:10.1128/JVI.02651-09. Naphade S, et al. Brief reports: Lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes. Stem Cells. 2015;33:301–9. doi:10.1002/stem.1835. Niu X, Gupta K, Yang JT, Shamblott MJ, Levchenko A. Physical transfer of membrane and cytoplasmic components as a general mechanism of cell-cell communication. J Cell Sci. 2009;122:600–10. doi:10.1242/jcs.031427. Pande S, et al. Metabolic cross-feeding via intercellular nanotubes among bacteria. Nat Commun. 2015;6:6238. doi:10.1038/ncomms7238. Pasquier J, et al. Different modalities of intercellular membrane exchanges mediate cell-to-cell p-glycoprotein transfers in MCF-7 breast cancer cells. J Biol Chem. 2012;287:7374–87. doi:10.1074/jbc.M111.312157. Pietila M, et al. Mortalin antibody-conjugated quantum dot transfer from human mesenchymal stromal cells to breast cancer cells requires cell-cell interaction. Exp Cell Res. 2013;319:2770–80. doi:10.1016/j.yexcr.2013.07.023. Rechavi O, Goldstein I, Vernitsky H, Rotblat B, Kloog Y. Intercellular transfer of oncogenic H-Ras at the immunological synapse. PLoS One. 2007;2:e1204. doi:10.1371/journal.pone.0001204. Schoelermann J, Burtey A, Allouni ZE, Gerdes HH, Cimpan MR. Contact-dependent transfer of TiO2 nanoparticles between mammalian cells. Nanotoxicology. 2016;10:204–15. doi:10.3109/17435390.2015.1048322. Sowinski S, et al. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol. 2008;10:211–9. doi:10.1038/ncb1682. Teague JE, Ryu HY, Kirber M, Sherr DH, Schlezinger JJ. Proximal events in 7,12-dimethylbenz[a]anthracene-induced, stromal cell-dependent bone marrow B cell apoptosis: stromal cell-B cell communication and apoptosis signaling. J Immunol. 2010;185:3369–78. doi:10.4049/jimmunol.0902541. Vallabhaneni KC, Haller H, Dumler I. Vascular Smooth Muscle Cells Initiate Proliferation of Mesenchymal Stem Cells by Mitochondrial Transfer via Tunneling Nanotubes. Stem Cells Dev. 2012;21:3104–13. doi:10.1089/scd.2011.0691. Zaccard CR, et al. CD40L induces functional tunneling nanotube networks exclusively in dendritic cells programmed by mediators of type 1 immunity. J Immunol. 2015;194:1047–56. doi:10.4049/jimmunol.1401832. Zani BG, Indolfi L, Edelman ER. Tubular bridges for bronchial epithelial cell migration and communication. PLoS One. 2010;5:e8930. doi:10.1371/journal.pone.0008930. Zhang L, Zhang Y. Tunneling nanotubes between rat primary astrocytes and C6 glioma cells alter proliferation potential of glioma cells. Neurosci Bull. 2015;31:371–8. doi:10.1007/s12264-014-1522-4. Zomer A, et al. Exosomes: fit to deliver small RNA. Commun Integr Biol. 2010;3:447–50. doi:10.4161/cib.3.5.12339. Guescini M, et al. Microvesicle and tunneling nanotube mediated intercellular transfer of g-protein coupled receptors in cell cultures. Exp Cell Res. 2012;318:603–13. doi:10.1016/j.yexcr.2012.01.005. Hu J, et al. An in vitro investigation into the role of bone marrowderived mesenchymal stem cells in the control of disc degeneration. Mol Med Rep. 2015;12:5701–8. doi:10.3892/mmr.2015.4139. Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20:576–90. doi:10.1016/j.ccr.2011.09.009. Munoz JL, et al. Delivery of functional anti-miR-9 by Mesenchymal stem cell-derived Exosomes to Glioblastoma Multiforme cells conferred Chemosensitivity. Mol Ther Nucleic Acids. 2013;2:e126. doi:10.1038/mtna.2013.60. Umezu T, Ohyashiki K, Kuroda M, Ohyashiki JH. Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene. 2013;32:2747–55. doi:10.1038/onc.2012.295. Zhou HL, et al. Intercellular transfer of P-glycoprotein from the drug resistant human bladder cancer cell line BIU-87 does not require cell-to-cell contact. J Urol. 2013;190:1069–75. doi:10.1016/j.juro.2013.04.053. Lou E, et al. Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS One. 2012;7:e33093. doi:10.1371/journal.pone.0033093. Thayanithy, V. et al. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells. Exp Cell Res 323, 178–188, doi:10.1016/j.yexcr.2014.01.014 (2014). Thery, C., Amigorena, S., Raposo, G. & Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3, Unit 3 22, doi:10.1002/0471143030.cb0322s30 (2006). Thayanithy V, et al. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells. Exp Cell Res. 2014;323:178–88. doi:10.1016/j.yexcr.2014.01.014. Franzen, C. A. et al. Characterization of uptake and internalization of exosomes by bladder cancer cells. Biomed Res Int 2014, 619829, doi:10.1155/2014/619829 (2014). Ady JW, et al. Intercellular communication in malignant pleural mesothelioma: properties of tunneling nanotubes. Front Physiol. 2014;5:400. doi:10.3389/fphys.2014.00400. Ady J, et al. Tunneling nanotubes: an alternate route for propagation of the bystander effect following oncolytic viral infection. Mol Ther Oncolytics. 2016;3:16029. doi:10.1038/mto.2016.29. Desir S, et al. Tunneling nanotube formation is stimulated by hypoxia in ovarian cancer cells. Oncotarget. 2016; 10.18632/oncotarget.9504. Mehdiani, A. et al. An innovative method for exosome quantification and size measurement. J Vis Exp, 50974, doi:10.3791/50974 (2015). Witwer KW, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2 doi:10.3402/jev.v2i0.20360. Hannafon BN, et al. Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. 2016;18:90. doi:10.1186/s13058-016-0753-x. Atai NA, et al. Heparin blocks transfer of extracellular vesicles between donor and recipient cells. J Neuro-Oncol. 2013;115:343–51. doi:10.1007/s11060-013-1235-y. Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci U S A. 2013;110:17380–5. doi:10.1073/pnas.1304266110. Osterman CJ, et al. Curcumin modulates pancreatic adenocarcinoma cell-derived Exosomal function. PLoS One. 2015;10:e0132845. doi:10.1371/journal.pone.0132845. Schoumacher M, Goldman RD, Louvard D, Vignjevic DM. Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J Cell Biol. 2010;189:541–56. doi:10.1083/jcb.200909113. Pasquier J. et al. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J Transl Med. 2013;11:94. doi:10.1186/1479-5876-11-94. Climent M, et al. TGFbeta triggers miR-143/145 transfer from smooth muscle cells to endothelial cells, Thereby Modulating Vessel Stabilization. Circ Res. 2015;116:1753–64. doi:10.1161/CIRCRESAHA.116.305178. Mineo M, et al. Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion. Angiogenesis. 2012;15:33–45. doi:10.1007/s10456-011-9241-1. Momen-Heravi F, et al. Alternative methods for characterization of extracellular vesicles. Front Physiol. 2012;3:354. doi:10.3389/fphys.2012.00354. Fruhbeis C. et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 2013;11:e1001604. doi:10.1371/journal.pbio.1001604.