Direct transcriptomic comparison of xenobiotic metabolism and toxicity pathway induction of airway epithelium models at an air–liquid interface generated from induced pluripotent stem cells and primary bronchial epithelial cellsCell Biology and Toxicology - Tập 39 - Trang 1-18 - 2022
Ivo Djidrovski, Maria Georgiou, Elena Tasinato, Martin O. Leonard, Jelle Van den Bor, Majlinda Lako, Lyle Armstrong
The airway epithelium represents the main barrier between inhaled air and the tissues of the respiratory tract and is therefore an important point of contact with xenobiotic substances into the human body. Several studies have recently shown that in vitro models of the airway grown at an air–liquid interface (ALI) can be particularly useful to obtain mechanistic information about the toxicity of chemical compounds. However, such methods are not very amenable to high throughput since the primary cells cannot be expanded indefinitely in culture to obtain a sustainable number of cells. Induced pluripotent stem cells (iPSCs) have become a popular option in the recent years for modelling the airways of the lung, but despite progress in the field, such models have so far not been assessed for their ability to metabolise xenobiotic compounds and how they compare to the primary bronchial airway model (pBAE). Here, we report a comparative analysis by TempoSeq (oligo-directed sequencing) of an iPSC-derived airway model (iBAE) with a primary bronchial airway model (pBAE). The iBAE and pBAE were differentiated at an ALI and then evaluated in a 5-compound screen with exposure to a sub-lethal concentration of each compound for 24 h. We found that despite lower expression of xenobiotic metabolism genes, the iBAE similarly predicted the toxic pathways when compared to the pBAE model. Our results show that iPSC airway models at ALI show promise for inhalation toxicity assessments with further development.
Recent advances in pluripotent stem cell-derived cardiac organoids and heart-on-chip applications for studying anti-cancer drug-induced cardiotoxicityCell Biology and Toxicology - Tập 39 - Trang 2527-2549 - 2023
Silin Liu, Chongkai Fang, Chong Zhong, Jing Li, Qingzhong Xiao
Cardiovascular disease (CVD) caused by anti-cancer drug-induced cardiotoxicity is now the second leading cause of mortality among cancer survivors. It is necessary to establish efficient in vitro models for early predicting the potential cardiotoxicity of anti-cancer drugs, as well as for screening drugs that would alleviate cardiotoxicity during and post treatment. Human induced pluripotent stem cells (hiPSCs) have opened up new avenues in cardio-oncology. With the breakthrough of tissue engineering technology, a variety of hiPSC-derived cardiac microtissues or organoids have been recently reported, which have shown enormous potential in studying cardiotoxicity. Moreover, using hiPSC-derived heart-on-chip for studying cardiotoxicity has provided novel insights into the underlying mechanisms. Herein, we summarize different types of anti-cancer drug-induced cardiotoxicities and present an extensive overview on the applications of hiPSC-derived cardiac microtissues, cardiac organoids, and heart-on-chips in cardiotoxicity. Finally, we highlight clinical and translational challenges around hiPSC-derived cardiac microtissues/organoids/heart-on chips and their applications in anti-cancer drug-induced cardiotoxicity. • Anti-cancer drug-induced cardiotoxicities represent pressing challenges for cancer treatments, and cardiovascular disease is the second leading cause of mortality among cancer survivors. • Newly reported in vitro models such as hiPSC-derived cardiac microtissues/organoids/chips show enormous potential for studying cardio-oncology. • Emerging evidence supports that hiPSC-derived cardiac organoids and heart-on-chip are promising in vitro platforms for predicting and minimizing anti-cancer drug-induced cardiotoxicity.
circRNA-PTPN4 mediated regulation of FOXO3 and ZO-1 expression: implications for blood–brain barrier integrity and cognitive function in uremic encephalopathyCell Biology and Toxicology - Tập 40 Số 1
Yuhan Liu, Qin Yan-ling, Yanning Zhang
AbstractUremic encephalopathy (UE) poses a significant challenge in neurology, leading to the need to investigate the involvement of non-coding RNA (ncRNA) in its development. This study employed ncRNA-seq and RNA-seq approaches to identify fundamental ncRNAs, specifically circRNA and miRNA, in the pathogenesis of UE using a mouse model. In vitro and in vivo experiments were conducted to explore the circRNA-PTPN4/miR-301a-3p/FOXO3 axis and its effects on blood–brain barrier (BBB) function and cognitive abilities. The research revealed that circRNA-PTPN4 binds to and inhibits miR-301a-3p, leading to an increase in FOXO3 expression. This upregulation results in alterations in the transcriptional regulation of ZO-1, affecting the permeability of human brain microvascular endothelial cells (HBMECs). The axis also influences the growth, proliferation, and migration of HBMECs. Mice with UE exhibited cognitive deficits, which were reversed by overexpression of circRNA-PTPN4, whereas silencing FOXO3 exacerbated these deficits. Furthermore, the uremic mice showed neuronal loss, inflammation, and dysfunction in the BBB, with the expression of circRNA-PTPN4 demonstrating therapeutic effects. In conclusion, circRNA-PTPN4 plays a role in promoting FOXO3 expression by sequestering miR-301a-3p, ultimately leading to the upregulation of ZO-1 expression and restoration of BBB function in mice with UE. This process contributes to the restoration of cognitive abilities.
Graphical Abstract
1. The circRNA-PTPN4/miR-301a-3p/FOXO3 axis is identified as a key regulator of blood–brain barrier integrity and cognitive function in uremic encephalopathy.
2. circRNA-PTPN4 sequestration of miR-301a-3p enhances FOXO3 expression, leading to upregulation of ZO-1 and improved endothelial permeability.
3. Overexpression of circRNA-PTPN4 in uremic mice restores cognitive abilities and reduces neuronal loss and inflammatory infiltration.
Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cellsCell Biology and Toxicology - Tập 27 - Trang 333-342 - 2011
Jing Sun, Shaochuang Wang, Dong Zhao, Fei Han Hun, Lei Weng, Hui Liu
Wide applications and extreme potential of metal oxide nanoparticles (NPs) increase occupational and public exposure and may yield extraordinary hazards for human health. Exposure to NPs has a risk for dysfunction of the vascular endothelial cells. The objective of this study was to assess the cytotoxicity of six metal oxide NPs to human cardiac microvascular endothelial cells (HCMECs) in vitro. Metal oxide NPs used in this study included zinc oxide (ZnO), iron(III) oxide (Fe2O3), iron(II,III) oxide (Fe3O4), magnesium oxide (MgO), aluminum oxide (Al2O3), and copper(II) oxide (CuO). The cell viability, membrane leakage of lactate dehydrogenase, intracellular reactive oxygen species, permeability of plasma membrane, and expression of inflammatory markers vascular cell adhesion molecule-1, intercellular adhesion molecule-1, macrophage cationic peptide-1, and interleukin-8 in HCMECs were assessed under controlled and exposed conditions (12–24 h and 0.001–100 μg/ml of exposure). The results indicated that Fe2O3, Fe3O4, and Al2O3 NPs did not have significant effects on cytotoxicity, permeability, and inflammation response in HCMECs at any of the concentrations tested. ZnO, CuO, and MgO NPs produced the cytotoxicity at the concentration-dependent and time-dependent manner, and elicited the permeability and inflammation response in HCMECs. These results demonstrated that cytotoxicity, permeability, and inflammation in vascular endothelial cells following exposure to metal oxide nanoparticles depended on particle composition, concentration, and exposure time.
ZNF471 modulates EMT and functions as methylation regulated tumor suppressor with diagnostic and prognostic significance in cervical cancerCell Biology and Toxicology - Tập 37 - Trang 731-749 - 2021
Samatha Bhat, Shama Prasada Kabekkodu, Divya Adiga, Rayzel Fernandes, Vaibhav Shukla, Poonam Bhandari, Deeksha Pandey, Krishna Sharan, Kapaettu Satyamoorthy
Cervical cancer (CC) is a leading cause of cancer-related death among women in developing countries. However, the underlying mechanisms and molecular targets for therapy remain to be fully understood. We investigated the epigenetic regulation, biological functions, and clinical utility of zinc-finger protein 471 (ZNF471) in CC. Analysis of cervical tissues and five independent public datasets of CC showed significant hypermethylation of the ZNF471 gene promoter. In CC cell lines, promoter DNA methylation was inversely correlated with ZNF471 expression. The sensitivity and specificity of the ZNF471 hypermethylation for squamous intraepithelial lesion (SIL) vs tumor and normal vs tumor was above 85% with AUC of 0.937. High methylation and low ZNF471 expression predicted poor overall and recurrence-free survival. We identified −686 to +114 bp as ZNF471 promoter, regulated by methylation using transient transfection and luciferase assays. The promoter CpG site methylation of ZNF471 was significantly different among cancer types and tumor grades. Gal4-based heterologous luciferase reporter gene assays revealed that ZNF471 acts as a transcriptional repressor. The retroviral mediated overexpression of ZNF471 in SiHa and CaSki cells inhibited growth, proliferation, cell migration, invasion; delayed cell cycle progression in vitro by increasing cell doubling time; and reduced tumor growth in vivo in nude mice. ZNF471 overexpression inhibited key members of epithelial-mesenchymal transition (EMT), Wnt, and PI3K-AKT signaling pathways. ZNF471 inhibited EMT by directly targeting vimentin as analyzed by bioinformatic analysis, ChIP-PCR, and western blotting. Thus, ZNF471 CpG specific promoter methylation may determine the prognosis of CC and could function as a potential tumor suppressor by targeting EMT signaling.
Caveolin-1-ACE2 axis modulates xenobiotic metabolism-linked chemoresistance in ovarian clear cell carcinomaCell Biology and Toxicology - Tập 39 - Trang 1181-1201 - 2022
Arulkumar Nagappan, Ki-Hyung Kim, Yuseok Moon
Among epithelial ovarian cancers, ovarian clear cell carcinoma (OCCC) remains markedly resistant to platinum-based chemotherapy, leading to poor clinical outcomes. In response to xenobiotic insults, caveolar platforms play crucial roles in modulating stress signaling responses in cancer cells. It has been hypothesized that caveolin-1 (Cav-1), a main component of the lipid raft, may regulate the response to platinum-based treatment in OCCC. The clinical transcriptomic evaluation demonstrated that high Cav-1 expression was positively associated with a favorable prognosis in patients with ovarian cancer. Cav-1 overexpression enhanced sensitivity to cisplatin (CDDP) treatment, whereas Cav-1 deficiency promoted chemoresistance in OCCC cells. Mechanistically, although Cav-1 counteracted angiotensin-converting enzyme 2 (ACE2) expression, ACE2 positively facilitated resistance to CDDP in OCCC cells. Furthermore, ACE2 restricted aryl hydrocarbon receptor expression and subsequent transcription of drug-metabolizing enzymes. Of note, ACE2 positively regulated the expression of the platinum-clearing enzyme CYP3A4. These findings suggest that the Cav-1-ACE2 axis modulates xenobiotic metabolism-linked chemoresistance in OCCC, predicting potential roles for the stress sentinel networks in oncogenic processes.
Lipopolysaccharide-induced CCN1 production enhances interleukin-6 secretion in bronchial epithelial cellsCell Biology and Toxicology - Tập 34 - Trang 39-49 - 2017
Lin Shi, Nian Dong, Dongxiang Ji, Xiaomin Huang, Zhaojian Ying, Xiangdong Wang, Chengshui Chen
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a clinical complication caused by primary or secondary lung injury, as well as by systemic inflammation. Researches regarding molecular pathophysiology of ALI/ARDS are immerging with an ultimate aim towards developing prognostic molecular biomarkers and molecule-based therapy. However, the molecular mechanisms concerning ALI/ARDS are still not completely understood. The purpose of the present study was to identify a crucial role of CCN1 in inflammatory microenvironment during ALI/ARDS and focus on a potential communication between CCN1 and interleukin-6 (IL-6) in the airway epithelial cells. Our data illustrated that the expression levels of CCN1 and IL-6 in bronchoalveolar lavage fluid (BALF) in a lipopolysaccharide (LPS)-induced ALI mouse model were significantly elevated and the pulmonary expression of CCN1 was restricted to bronchial epithelial cells. Interestingly, both endogenous and exogenous CCN1 stimulated IL-6 production in vitro. Furthermore, LPS-induced IL-6 production in a bronchial epithelial cell line was blocked by CCN siRNA whereas CCN1 induced by LPS was sensitive to PI3K inhibition. Together, our data indicate a linear signal pathway, LPS-CCN1-IL-6, existing in bronchial epithelial cells after LPS exposure. This finding may represent an additional mechanism and a novel target for development of therapy and biomarker on ALI/ARDS.