Molecular basis of active copper resistance mechanisms in Gram-negative bacteria
Tóm tắt
Copper is a metallic element that is crucial for cell metabolism; however, in extended concentrations, it is toxic for all living organisms. The dual nature of copper has forced organisms, including bacteria, to keep a tight hold on cellular copper content. This challenge has led to the evolution of complex mechanisms that on one hand enable them to deliver the essential element and on the other to protect cells against its toxicity. Such mechanisms have been found in both eukaryotic and prokaryotic cells. In bacteria a number of different systems such as extra- and intracellular sequestration, enzymatic detoxification, and metal removal from the cell enabling them to survive in the presence of high concentration of copper have been identified. Gram-negative bacteria, due to their additional compartment, need to deal with both cytoplasmic and periplasmic copper. Therefore, these bacteria have evolved intricate and precisely regulated systems which interact with each other. In this review the active mechanisms of copper resistance at their molecular level are discussed.
Tài liệu tham khảo
Arnesano F, Banci L, Bertini I, Thompsett AR. Solution structure of CopC: a cupredoxin-like protein involved in copper homeostasis. Structure. 2002;10:1337–47.
Bagai I, Liu W, Rensing C, Blackburn NJ, McEvoy MM. Substrate-linked conformational change in the periplasmic component of Cu(I)/Ag (I) efflux system. J Biol Chem. 2007;282:35695–702.
Bagai I, Rensing C, Blackburn NJ, McEvoy MM. Direct metal transfer between periplasmic proteins identifies a bacterial copper chaperone. Biochemistry. 2008;47:11408–14.
Bannister JV, Bannister WH. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem. 1987;22:111–90.
Cha JS, Cooksey DA. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Microbiology. 1991;88:8915–9.
Cooksey DA. Copper uptake and resistance in bacteria. Mol Microbiol. 1993;7:1–5.
Cooksey DA, Azad HR, Cha JR, Lim CK. Copper resistance gene homologs in pathogenic and saprophytic bacterial species from tomato. Appl Environ Microb. 1990;56:431–5.
De la Cerda B, Navarro JA, Hervás M, De la Rosa M. Changes in the reaction mechanism of electron transfer from plastocyanin to photosystem I in the cyanobacterium Synechocystis sp. PCC 6803 as induced by site-directed mutagenesis of the copper protein. Biochemistry. 1997;36:10125–30.
Djoko KY, Chong LX, Wedd AG, Xiao Z. Reaction mechanisms of the multicopper oxidase CueO from Escherichia coli support its functional role as a cuprous oxidase. J Am Chem Soc. 2010;132:2005–15.
Dupont CL, Grass G, Rensing C. Copper toxicity and the origin of bacterial resistance—new insights and applications. Metallomics. 2011;3:1109–18.
Fan B, Rosen BP. Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATP-ase. J Biol Chem. 2002;277:46987–92.
Franke S, Grass G, Dietrich HN. The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. Microbiology. 2001;147:965–72.
Franke S, Grass G, Rensing C, Nies D. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol. 2003;185:3804–12.
Giner-Lamia J, Maury-López L, Reyes JC, Florencio FJ. The CopRS two-component system is responsible for resistance to copper in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol. 2012;159:1806–18.
González AG, Shirokova LS, Pokrovsky OS, Emnova EE, Martínez RE, Santana-Casiano JM, et al. Adsorption of copper on Pseudomonas aureofaciens: protective role of surface exopolysaccharides. J Colloid Interf Sci. 2010;350:305–14.
González-Guerrero M, Raimunda D, Cheng X, Argüello JM. Distinct functional roles of homologous Cu+ efflux ATPases in Pseudomonas aeruginosa. Mol Microbiol. 2010;78:1246–58.
Gourdon P, Liu XY, Skjørringe T, Morth JP, Møller LB, Pedersen BP, et al. Crystal structure of a cooper-transporting PIB-type ATPase. Nature. 2011;475:59–65.
Grass G, Rensing C. Genes involved in copper homeostasis in Escherichia coli. J Bacteriol. 2001;183:2145–7.
Huffman DL, Huyett J, Outten FW, Doan PE, Finney LA, Hoffman BM, et al. Spectroscopy of Cu(II)-PcoC and the multicopper oxidase function of PcoA, two essential components of Escherichia coli pco copper resistance operon. Biochemistry. 2002;41:10046–55.
Iwata S. Structure and function of bacterial cytochrome c oxidase. J Biochem. 1998;123:369–75.
Kim EH, Charpentier X, Torres-Urquidy O, McEvoy MM, Rensing C. The metal efflux island of Legionella pneumophila is not required for survival in macrophages and amoebas. FEMS Microbiol Lett. 2009;301:164–70.
Kim HM, Xu Y, Lee M, Piao S, Sim SH, Ha NC, et al. Functional relationships between the AcrA hairpin tip region and the TolC aperture tip region for the formation of the bacterial tripartite efflux pump AcrAB-TolC. J Bacteriol. 2010;192:4498–503.
Kulathila R, Kulathila R, Indic M, Berg B. Crystal structure of Escherichia coli CusC, the outer membrane component of a heavy metal efflux pump. PLOS One. 2011;6:1–7.
Lee SM, Grass G, Rensing C, Barrett SR, Yates CJD, Stoyanov JV, et al. The Pco proteins are involved in copper handling in Escherichia coli. Biochem Bioph Res Co. 2002;295:616–20.
Loftin IR, Franke S, Roberts SA, Weichsel A, Héroux A, Montfort WR, et al. A novel copper-binding fold for the periplasmic copper resistance protein CusF. Biochemistry. 2005;44:10533–40.
Loftin IR, Blackburn NJ, McEvoy MM. Tryptophan Cu(I)-π interaction fine-tunes the metal binding properties of the bacterial metallochaperone CusF. J Biol Inorg Chem. 2009;14:905–12.
Long F, Su CC, Zimmermann MT, Boyken SE, Rajashankar KR, Jernigan RL, et al. Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport. Nature. 2010;467:484–90.
Macomber L, Imlay JA. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. PNAS. 2009;106:8344–9.
Marrero K, Sánchez A, González LJ, Ledón T, Rodríguez-Ulloa A, Castellanos-Serra L, et al. Periplasmic proteins encoded by VCA0261-0260 and VC2216 genes together with copA and cueR products are required for copper tolerance but not for virulence in Vibrio cholerae. Microbiology. 2012;158:2005–16.
Monchy S, Benotmane MA, Wattiez R, Aelst S, Auquier V, Borremans B, et al. Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology. 2006;152:1765–76.
Munson GP, Lam DL, Outten FW, O'Halloran TV. Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol. 2000;182:5864–71.
Nakamura K, Go N. Function and molecular evolution of multicopper blue proteins. CMLS Cell Mol Life Sci. 2005;62:2050–66.
Outten FW, Huffman DL, Hale JA, O'Halloran TV. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem. 2001;276:30670–7.
Osman D, Waldron KJ, Denton H, Taylor CM, Grant AJ, Mastroeni P, et al. Copper homeostasis in Salmonella is atypical and copper-CueP is a major periplasmic metal complex. J Biol Chem. 2010;285:25259–68.
Pontel LB, Soncini FC. Alternative periplasmic copper-resistance mechanisms in Gram negative bacteria. Mol Microbiol. 2009;73:212–25.
Puig S, Rees EM, Thiele DJ. The ABCDs of periplasmic copper trafficking. Structure. 2002;10:1292–5.
Raimunda D, González-Guerrero M, Leeber BW, Argüello JM. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function. Biometals. 2011;24:467–75.
Rensing C, Fan B, Sharma R, Mitra B, Rosen BP. CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. PNAS. 2000;97:652–6.
Rensing C, Grass G. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev. 2003;27:197–213.
Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, et al. Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. PNAS. 2002;99:2766–71.
Robinson NJ. A platform for copper pumps. Nature. 2011;475:41–2.
Rouch DA, Brown NL. Copper-inducible transcriptional regulation at two promoters in the Escherichia coli copper resistance determinant pco. Microbiology. 1997;143:1191–202.
Sarret G, Favier A, Covès J, Hazzemann JL, Mergeay M, Bersch B. CopK from Cupriavidus metallidurans CH34 binds Cu(I) in a tetrathioether site: characterization by X-ray absorption and NMR spectroscopy. J Am Chem Soc. 2010;132:3770–7.
Silver S. Bacterial resistances to toxic metal ions—a review. Gene. 1996;179:9–19.
Singh SK, Grass G, Rensing C, Montfort WR. Cuprous oxidase activity of CueO from Escherichia coli. J Bacteriol. 2004;186:7815–7.
Singh SK, Roberts SA, Franke McDevitt S, Weichsel A, Wildner GF, Grass GB, et al. Crystal structures of multicopper oxidase CueO bound to copper(I) and silver(I): functional role of a methionine-rich sequence. J Biol Chem. 2011;286:37849–57.
Su CC, Yang F, Long F, Reyon D, Routh MD, Kuo DW, et al. Crystal structure of the membrane fusion protein CusB from Escherichia coli. J Mol Biol. 2009;393:342–55.
Su CC, Long F, Zimmermann MT, Rajashankar KR, Jernigan RL, Yu EW. Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli. Nature. 2011a;470:558–63.
Su CC, Long F, Yu EW. The Cus efflux system removes toxic ions via a methionine shuttle. Protein Sci. 2011b;20:6–18.
Tom-Petersen A, Hosbond C, Nybroe O. Identification of copper-induced genes in Pseudomonas fluorescens and use of a reporter strain to monitor bioavailable copper in soil. FEMS Microbiol Ecol. 2001;38:59–67.
Tottey S, Patterson CJ, Banci L, Bertini I, Felli IC, Pavelkova A, et al. Cyanobacterial metallochaperone inhibits deleterious side reactions of copper. PNAS. 2012;109:95–100.
Wernimont AK, Huffman DL, Finney LA, Demeler B, O'Halloran TV, Rosenzweig AC. Crystal structure and dimerization equilibria of PcoC, a methionine-rich copper resistance protein from Escherichia coli. J Biol Inorg Chem. 2003;8:185–94.
Zhang L, Koay M, Maher MJ, Xiao Z, Wedd AG. Intermolecular transfer of copper ions from the CopC protein of Pseudomonas syringae. Crystal structures of fully loaded CuICuII forms. J Am Chem Soc. 2006;128:5834–50.
Zhang XX, Rainey PB. Regulation of copper homeostasis in Pseudomonas fluorescens SBW25. Environ Microbiol. 2008;10:3284–94.