Cancer Imaging
1470-7330
Cơ quản chủ quản: BioMed Central Ltd. , BMC
Các bài báo tiêu biểu
To compare the diagnostic accuracy of biparametric MRI (bpMRI) and multiparametric MRI (mpMRI) for prostate cancer (PCa) and clinically significant prostate cancer (csPCa) and to explore the application value of dynamic contrast-enhanced (DCE) MRI in prostate imaging.
This study retrospectively enrolled 235 patients with suspected PCa in our hospital from January 2016 to December 2017, and all lesions were histopathologically confirmed. The lesions were scored according to the Prostate Imaging Reporting and Data System version 2 (PI-RADS V2). The bpMRI (T2-weighted imaging [T2WI], diffusion-weighted imaging [DWI]/apparent diffusion coefficient [ADC]) and mpMRI (T2WI, DWI/ADC and DCE) scores were recorded to plot the receiver operating characteristic (ROC) curves. The area under the curve (AUC), accuracy, sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) for each method were calculated and compared. The patients were further stratified according to bpMRI scores (bpMRI ≥3, and bpMRI = 3, 4, 5) to analyse the difference in DCE MRI between PCa and non-PCa lesions (as well as between csPCa and non-csPCa).
The AUC values for the bpMRI and mpMRI protocols for PCa were comparable (0.790 [0.732–0.840] and 0.791 [0.733–0.841], respectively). The accuracy, sensitivity, specificity, PPV and NPV of bpMRI for PCa were 76.2, 79.5, 72.6, 75.8, and 76.6%, respectively, and the values for mpMRI were 77.4, 84.4, 69.9, 75.2, and 80.6%, respectively. The AUC values for the bpMRI and mpMRI protocols for the diagnosis of csPCa were similar (0.781 [0.722–0.832] and 0.779 [0.721–0.831], respectively). The accuracy, sensitivity, specificity, PPV and NPV of bpMRI for csPCa were 74.0, 83.8, 66.9, 64.8, and 85.0%, respectively; and 73.6, 87.9, 63.2, 63.2, and 87.8%, respectively, for mpMRI. For patients with bpMRI scores ≥3, positive DCE results were more common in PCa and csPCa lesions (both
The diagnostic accuracy of bpMRI is comparable with that of mpMRI in the detection of PCa and the identification of csPCa. DCE MRI is helpful in further identifying PCa and csPCa lesions in patients with bpMRI ≥3, especially bpMRI = 4, which may be conducive to achieving a more accurate PCa risk stratification. Rather than omitting DCE, we think further comprehensive studies are required for prostate MRI.
We developed a computational model integrating clinical data and imaging features extracted from contrast-enhanced computed tomography (CECT) images, to predict lymph node (LN) metastasis in patients with pancreatic ductal adenocarcinoma (PDAC).
This retrospective study included 159 patients with PDAC (118 in the primary cohort and 41 in the validation cohort) who underwent preoperative contrast-enhanced computed tomography examination between 2012 and 2015. All patients underwent surgery and lymph node status was determined. A total of 2041 radiomics features were extracted from venous phase images in the primary cohort, and optimal features were extracted to construct a radiomics signature. A combined prediction model was built by incorporating the radiomics signature and clinical characteristics selected by using multivariable logistic regression. Clinical prediction models were generated and used to evaluate both cohorts.
Fifteen features were selected for constructing the radiomics signature based on the primary cohort. The combined prediction model for identifying preoperative lymph node metastasis reached a better discrimination power than the clinical prediction model, with an area under the curve of 0.944 vs. 0.666 in the primary cohort, and 0.912 vs. 0.713 in the validation cohort.
This pilot study demonstrated that a noninvasive radiomics signature extracted from contrast-enhanced computed tomography imaging can be conveniently used for preoperative prediction of lymph node metastasis in patients with PDAC.