thumbnail

Cambridge University Press (CUP)

SCIE-ISI SCOPUS (1968-2023)

  0009-8604

  1552-8367

 

Cơ quản chủ quản:  SPRINGER , Clay Minerals Society

Lĩnh vực:
Water Science and TechnologyGeochemistry and PetrologySoil ScienceEarth and Planetary Sciences (miscellaneous)

Các bài báo tiêu biểu

Baseline Studies of the Clay Minerals Society Source Clays: Infrared Methods
- 2001
Jana Madejová, Peter Komadel

Infrared (IR) spectroscopy has a long and successful history as an analytical technique and is used extensively (McKelvy et al., 1996; Stuart, 1996). It is mainly a complementary method to X-ray diffraction (XRD) and other methods used to investigate clays and clay minerals. It is an economical, rapid and common technique because a spectrum can be obtained in a few minutes and the instruments are sufficiently inexpensive as to be available in many laboratories. An IR spectrum can serve as a fingerprint for mineral identification, but it can also give unique information about the mineral structure, including the family of minerals to which the specimen belongs and the degree of regularity within the structure, the nature of isomorphic substituents, the distinction of molecular water from constitutional hydroxyl, and the presence of both crystalline and non-crystalline impurities (Farmel, 1979).

Effect of pH on the Formation of Goethite and Hematite from Ferrihydrite
Tập 31 Số 4 - Trang 277-284 - 1983
U. Schwertmann, Enver Murad
Abstract

Storage of ferrihydrite in aqueous suspensions at 24°C and pHs between 2.5 and 12 for as long as three years resulted in the formation of goethite and hematite. The proportions and crystallinity of these products varied widely with the pH. Maximum hematite was formed between pH 7 and 8, and maximum goethite at pH 4 and at pH 12. The crystallinity of both products, as indicated by X-ray powder diffraction line broadening and magnetic hyperfine field values and distribution widths, was poorer, the lower the proportion of the corresponding product in the mixture. The existence of two competitive formation processes is suggested: goethite is formed via solution, preferably from monovalent Fe(III) ions [Fe(OH)2+ and Fe(OH)4], and hematite by internal rearrangement and dehydration within the ferrihydrite aggregates. This concept relates the proportions of goethite and hematite to the activity of the Fe(III) ion species in solution, and implies that conditions favorable for the formation of goethite are unfavorable for that of hematite and vice versa.

Methylene Blue Absorption by Clay Minerals. Determination of Surface Areas and Cation Exchange Capacities (Clay-Organic Studies XVIII)
Tập 18 Số 4 - Trang 203-212 - 1970
Pham Thi Hang
Abstract

Under appropriate conditions, both surface areas and cation exchange capacities of clay minerals can be measured by absorption of methylene blue from aqueous solutions. The method has been applied to two kaolinites, one illite, and one montmorillonite, all initially saturated with Na+ ions. For Na-montmorillonite, the total area, internal plus external, is measured. For Ca-montmorillonite, entry of methylene blue molecules appears to be restricted by the much smaller expansion of the Ca- clay in water. X-ray diffraction data clarify the absorption behavior in Na- and Ca-montmorillonite, and in particular it is shown that two orientations of the methylene blue molecules are involved.

Mechanism of Adsorption and Desorption of Water Vapor by Homoionic Montmorillonites: 2. The Li+, Na+, K+, Rb+ and Cs+-Exchanged Forms
Tập 43 Số 3 - Trang 324-336 - 1995
I. Bérend, Jean‐Maurice Cases, Michèle François, Jean-Pierre Uriot, Laurent J. Michot, Armand Masion, Fabien Thomas
Abstract

Methods previously used to distinguish between water adsorbed on external surfaces and in the interlamellar space of Na-montmorillonite during adsorption and desorption of water vapor have been extended to a set of homoionic Li-, Na-, K-, Rb- and Cs-montmorillonite. The textural and structural features have been investigated at different stages of hydration and dehydration using controlled-rate thermal analysis, nitrogen adsorption volumetry, water adsorption gravimetry, immersion microcalorimetry and X-ray powder diffraction under controlled humidity conditions. During hydration, the size of the quasi-crystals decreases from 33 layers to 8 layers for Na-montmorillonite and from 25 layers to 10 layers for K-montmorillonite, but remains stable around 8–11 layers for Cs-montmorillonite. Each homoionic species leads to a one-layer hydrate, which starts forming at specific values of water vapor relative pressure. Li-, Na- and K-montmorillonite can form a two-layer hydrate. By comparing experimental X-ray diffraction patterns with theoretically simulated ones, the evolution of structural characteristics of montmorillonites during hydration or desorption can be described. Using structural and textural data, it is shown that during adsorption: (1) the rate of filling of interlamellar space of the one layer hydrate increases with the relative pressure but decreases with the size of the cations; and (2) the different hydrated states are never homogeneous.

Quantitative X-Ray Diffraction Analysis of Clay-Bearing Rocks From Random Preparations
- 2001
Jan Środoń
Abstract

An internal standard X-ray diffraction (XRD) analysis technique permits reproducible and accurate calculation of the mineral contents of rocks, including the major clay mineral families: Fe-rich chlorites + berthierine, Mg-rich chlorites, Fe-rich dioctahedral 2:1 clays and micas, Al-rich dioctahedral 2:1 clays and micas, and kaolinites. A single XRD pattern from an air-dried random specimen is used. Clays are quantified from their 060 reflections which are well resolved and insensitive to structural defects. Zincite is used as the internal standard instead of corundum, because its reflections are more conveniently located and stronger, allowing for a smaller amount of spike (10%). The grinding technique used produces powders free of grains coarser than 20 µm and suitable for obtaining random and rigid specimens.

Errors in accuracy are low, <2 wt. % deviation from actual values for individual minerals, as tested on artificial shale mixtures. No normalization is applied and thus, for natural rocks, the analysis is tested by the departure of the sum of the measured components from 100%. Our approach compares favorably with other quantitative analysis techniques, including a Rietveld-based technique.

The Use of Clay as an Engineered Barrier in Radioactive-Waste Management — A Review
Tập 61 Số 6 - Trang 477-498 - 2013
Patrik Sellin, Olivier X. Leupin
Abstract

Geological disposal is the preferred option for the final storage of high-level nuclear waste and spent nuclear fuel in most countries. The selected host rock may be different in individual national programs for radioactive-waste management and the engineered barrier systems that protect and isolate the waste may also differ, but almost all programs are considering an engineered barrier. Clay is used as a buffer that surrounds and protects the individual waste packages and/or as tunnel seal that seals off the disposal galleries from the shafts leading to the surface.

Bentonite and bentonite/sand mixtures are selected primarily because of their low hydraulic permeability in a saturated state. This ensures that diffusion will be the dominant transport mechanism in the barrier. Another key advantage is the swelling pressure, which ensures a self-sealing ability and closes gaps in the installed barrier and the excavation-damaged zone around the emplacement tunnels. Bentonite is a natural geological material that has been stable over timescales of millions of years and this is important as the barriers need to retain their properties for up to 106 y.

In order to be able to license a final repository for high-level radioactive waste, a solid understanding of how the barriers evolve with time is needed. This understanding is based on scientific knowledge about the processes and boundary conditions acting on the barriers in the repository. These are often divided into thermal, hydraulic, mechanical, and (bio)chemical processes. Examples of areas that need to be evaluated are the evolution of temperature in the repository during the early stage due to the decay heat in the waste, re-saturation of the bentonite blocks installed, build-up of swelling pressure on the containers and the surrounding rock, and degradation of the montmorillonite component in the bentonite. Another important area of development is the engineering aspects: how can the barriers be manufactured, subjected to quality control, and installed?

Geological disposal programs for radioactive waste have generated a large body of information on the safety-relevant properties of clays used as engineered barriers. The major relevant findings of the past 35 y are reviewed here.

Chlorite Geothermometry: A Review
Tập 41 Số 2 - Trang 219-239 - 1993
Patrice de Caritat, I. D. Hutcheon, J. L. Walshe
Abstract

Chlorite minerals, found in a great variety of rocks and geological environments, display a wide range of chemical compositions and a variety of polytypes, which reflect the physicochemical conditions under which they formed. Of particular importance for studies dealing with ore deposit genesis, metamorphism, hydrothermal alteration or diagenesis is the paleotemperature of chlorite crystallization. However, in order to understand the relationship between chlorite composition and formation temperature and hence use chlorite as a geothermometer, one must determine how other parameters influence chlorite composition. These parameters may include fO2 and pH of the solution and Fe/(Fe + Mg) and bulk mineral composition of the host rock.

Four approaches to chlorite geothermometry, one structural and three compositional, have been proposed in the past: 1) a polytype method based on the (largely qualitative) observation that structural changes in chlorite may be partly temperature-dependent (Hayes, 1970); 2) an empirical calibration between the tetrahedral aluminum occupancy in chlorites and measured temperature in geothermal systems (Cathelineau, 1988), which has subsequently been modified by several workers; 3) a six-component chlorite solid solution model based upon equilibrium between chlorite and an aqueous solution, which uses thermodynamic properties calibrated with data from geothermal and hydrothermal systems (Walshe, 1986); and 4) a theoretical method based on the intersection of chlorite-carbonate reactions and the CO2-H2O miscibility surface in temperature-XCO2 space, which requires that the composition of a coexisting carbonate phase (dolomite, ankerite, Fe-calcite or siderite) be known or estimated (Hutcheon, 1990). These four approaches are reviewed and the different calculation methods for the compositional geothermometers are applied to a selection of chlorite analyses from the literature. Results of this comparative exercise indicate that no single chlorite geothermometer performs satisfactorily over the whole range of natural conditions (different temperatures, coexisting assemblages, Fe/(Fe + Mg), fO2, etc.). Therefore, chlorite geothermometry should be used with caution and only in combination with alternative methods of estimating paleotemperatures.

Hydrophobicity of Siloxane Surfaces in Smectites as Revealed by Aromatic Hydrocarbon Adsorption from Water
Tập 39 Số 4 - Trang 428-436 - 1991
W. F. Jaynes
Abstract

The nature of the siloxane surface in smectites was investigated by measuring the adsorption of aromatic hydrocarbons from water by organo-clays. The organo-clays were prepared by replacing the hydrophilic, inorganic exchange cations of a series of smectites with the small, hydrophobic organic cation, trimethylphenylammonium (TMPA). Smectites with a range in charge densities were used that resulted in different TMPA contents in the organo-clays. Adsorption isotherms of benzene, alkylbenzenes, and naphthalene from water by the TMPA-smectites indicated that sorption was inversely related to TMPA content. The Langmuir form of the isotherms suggests that the aromatic compounds adsorb to the clay surface. Possible adsorptive sites in TMPA-smectites are limited to the TMPA cations and the siloxane oxygen surfaces. Because sorption increased as layer charge and TMPA content decreased, the organic compounds must adsorb to the siloxane surfaces.

Calculations based on an adsorbed compound monolayer, which was estimated by fitting adsorption data to the Langmuir equation, and the N2 specific surface area of each TMPA-clay, indicate that the surface area occupied by each adsorbed molecule increases as the planar area of the molecule increases. This strongly indicates that the planar surfaces of the compounds adsorb directly to the clay surface. Apparently, the TMPA cations function to keep the smectite interlayers open. Interactions between the phenyl groups of TMPA cations on opposing interlayer clay surfaces may act to increase the size of the adsorptive regions. These results show that the siloxane surfaces of smectites can effectively adsorb aromatic hydrocarbons from water if the hydrophilic, inorganic exchange cations are replaced with small, hydrophobic organic cations. The strong adsorption of hydrophobic organic molecules from water demonstrates the hydrophobicity of the siloxane surfaces in smectites.

Cross-Linked Smectites. I. Synthesis and Properties of Hydroxy-Aluminum-Montmorillonite
Tập 26 Số 2 - Trang 107-115 - 1978
N. Lahav, Uri Shani, Joseph Shabtai
Abstract

A stable porous system consisting of montmorillonite cross-linked by Al-hydroxide oligomers was synthesized by reacting at room temperature an aqueous solution of such oligomers with a unit-layer dispersion of montmorillonite. The resulting cross-linked montmorillonite (Al-CLM) is a nonswelling material, showing basal spacings of 14.4 to 18.8 Å after air drying and between 14.2 to 18.0 Å after treatment at 110°C. The basal spacing is found to depend on the age and OH/Al ratio of the Al-hydroxide solution, as well as on the relative amounts of the two reactants. A specific surface area of 160 m2/g and a diffraction pattern with a dominant basal spacing of 17.5 Å is obtained by using Al-hydroxide with OH/Al = 1.85, aged for at least 5 days, and by applying an Al/montmorillonite ratio greater than 1.5 in the cross-linking process. The basal spacing of Al-CLM remains essentially unchanged after heating at 220°C, while the specific surface area is not affected by heat treatment up to 480°C.

Two possible configurations of Al-hydroxide oligomers, homogeneously distributed between parallel montmorillonite unit-layers, were considered in order to account for the basal spacing of 17.5–18.8 Å, viz. (a) stacking of two oligomeric ring units in parallel orientation relative to the clay lamellae and (b) perpendicular orientation of individual oligomeric units.