Cambridge University Press (CUP)
0009-8604
1552-8367
Cơ quản chủ quản: SPRINGER , Clay Minerals Society
Lĩnh vực:
Water Science and TechnologyGeochemistry and PetrologySoil ScienceEarth and Planetary Sciences (miscellaneous)
Phân tích ảnh hưởng
Thông tin về tạp chí
Các bài báo tiêu biểu
Wettability Contrasts in Kaolinite and Illite Clays: Characterization by Infrared and X-Ray Absorption Spectroscopies
Tập 45 - Trang 184-193 - 1997
A reservoir rock is a porous geological formation in contact with 2 liquids, brine and oil. An improved knowledge of rock wettability is of primary importance to estimate the amount of crude oil in underground resources. The petroleum industries have observed that wettability contrasts in sedimentary reservoir rocks are largely correlated to the presence of clays, illite and/or kaolinite in the rocks’ intergranular space. More precisely, the grain surfaces of illite show a preference for brine. Kaolinite preferentially adsorbs oil, which imparts its hydrophobic characteristics to the mineral surface. Using X-ray absorption spectroscopy (XAS) and Fourier transform infrared (FTIR) spectroscopy, we studied the adsorption process of asphaltenes in the presence of water at the microscopic level. We demonstrate experimentally that the wettability contrasts observed in kaolinite and illite are related to structural differences between these 2 clays, and we show the role of the grain surface hydroxyls. With clay materials, the purity of the samples is the most important limitation of the quantitative use of extended X-ray absorption fine structure (EXAFS).
Effect of Selective Dissolution on Charge and Surface Properties of an Acid Soil Clay
Tập 32 - Trang 283-290 - 1984
To evaluate the importance of oxides to the surface chemistry of acid mineral soils, clay fractions were separated from a surface and subsurface horizon of an Inceptisol representative of many of the acid soils of the Southern Tier of New York state. Portions of the clays were treated to remove selectively noncrystalline and microcrystalline Fe and A1 oxides (acid ammonium oxalate extraction), total free iron oxides (dithionite reduction in buffered citrate solution), and organic matter (hypochlorite oxidation). Charge and ion-adsorption characteristics of the treated and untreated clays were investigated by means of Ca2+- and Cl−-exchange capacities, potentiometric titrations, and electrophoretic mobility (zeta potential) measurements of the CaCl2-treated clays. Based upon surface area and anion- and cation-exchange measurements, the Fe and A1 oxides or oxideorganic matter complexes were found to contribute a large part of the surface area and pH-dependent charge of these clays. Oxide removal increased the cation-exchange capacity (CEC) and virtually eliminated the anion-exchange capacity (AEC) at pH 3 and 5.5 while shifting the positive zeta potential (ZPC) of the B-horizon clay toward negative values. Organic matter oxidation increased the AEC at pH 3 and the CEC at pH 5.5 and markedly shifted the ZPCs of both A- and B-horizon clays toward more positive values, probably by the removal of adsorbed organics from oxide surfaces. Estimates of the ZPCs of the clays varied among the three methods used, Ca2+- and Cl−-exchange capacities giving the lowest, and electrophoresis giving the highest values.
Adsorption of Organic Diacids and Sodium Polyacrylate onto Montmorillonite
Tập 28 Số 5 - Trang 381-387 - 1980
Assessment of Cation Binding to Clay Minerals Using Solid-State NMR
Tập 46 Số 3 - Trang 349-354 - 1998
Electron Microscopic Investigations of Iron Oxyhydroxides and Accompanying Phases in Lateritic Iron-Crust Pisolites
Tập 34 - Trang 45-52 - 1986
Pisolites from an iron crust in western Senegal were studied by conventional and high-resolution electron microscopy to determine their internal structure and the genetic processes that led to their formation. Each pisolite consisted of a concentric structure of hematite rimmed by goethite. Two types of goethite were distinguished: (1) large (≃ 0.6 μm long and 0.06 μm wide), euhedral laths arranged in fibrous aggregates of slightly misoriented grains devoid of internal defects as shown by their two-dimensional lattice images, and (2) a matrix of smaller (≃400 Å), anhedral grains surrounded by the larger laths. Based upon the crystal habit and the presence or absence of internal alveoles, the large goethite laths probably grew at the expense of the matrix goethite. Poorly crystalline kaolinite, presumably formed from well-crystalline precursor kaolinite, and clusters of partially dissolved quartz grains were also imaged. In addition, two uncommon phases were found—maghemite in topotactic relationship with hematite and a layered, Fe-rich, mica-like mineral with a 2M superstructure. Unlike kaolinite, this latter phase was likely in equilibrium with iron oxyhydroxides. Substituted Al probably was released during goethite recrystallization, and mass transfers probably took place through the heterogeneous porosity (i.e., large voids and cracks coupled with fine pores) revealed by transmission electron microscopy. Des pisolites, provenant d’une cuirasse ferrugineuse de l’ouest du Sénégal, ont été étudiés en microscopie électronique conventionnelle et haute résolution dans le but de déterminer leur structure interne et les processus génétiques conduisant à leur formation. Chaque pisolite montre une structure concentrique d’hématite entourée de goethite. Deux types de goethite sont différenciés: (1) des grandes lattes automorphes (≃0,6 μm de long sur 0,06 μm de large) composées de grains légèrement désorientés les uns par rapport aux autres et accolés sous forme de fibres selon c—ces grains étant dépourvus de défauts internes comme le montrent les images bidimensionnelles de leur réseau, et (2) une matrice de grains plus petits (≃ 400 Å) et xénomorphes entourés par les grandes lattes. D’après des critères morphologiques et la présence ou l’absence de figures internes de dissolution (pores) il semble que les grandes lattes de goethite se sont développées aux dépens de la matrice de goethite. De la kaolinite mal cristallisée— sans doute dans un état instable—et des agrégats de grains de quartz partiellement dissous sont également imagés. Enfin, deux phases peu communes sont révélées—de la maghemite en relation topotactique avec l’hématite et un minéral en couche type mica, riche en fer et présentant une surstructure 2M. A l’inverse de la kaolinite, cette dernière phase est vraisemblablement en équilibre avec les oxi-hydroxydes de fer. La substitution de l’aluminium a lieu sans doute durant la recristallisation de la goethite et les transferts de masse se font certainement grâce à l’existence d’une porosité très hétérogène (grands vides, fissures et pores fins) mise en évidence par la microscopie électronique en transmission.
Nanometer-scale chemical modification of nano-ball allophane Abstract Nano-ball allophane is a hydrous Al silicate with a hollow-sphere morphology that contains some defects or pores along the spherule walls. Enlargement of the pore openings by dilute alkali treatment was confirmed by cation exchange capacity determinations using various alkylammonium cations as replacement cations. An allophane sample with a low Si/Al ratio (0.67) was equilibrated with 10 mM CaCl2 (pH = 6.0) and the Ca2+ retained was extracted using aqueous 1 M NH4 C1 or alkylammonium chloride salts. The Ca2+ extracted by NH 4 + was 15.1 cmolc kg−1 , but CH 3 NH 3 + ${\rm{C}}{{\rm{H}}_3}{\rm{NH}}_3^ + $ (mean diameter = 0.38 nm) only extracted 7.9 cmolc kg−1 of Ca2+ . After 10 mM NaOH treatment (0.25 g:100 mL) of the allophane, the Ca2+ extracted by NH 4 + ${\rm{NH}}_4^ + $ was 29.7 cmolc kg−1 , 29.6 cmolc kg−1 by CH 3 NH 3 + ${\rm{C}}{{\rm{H}}_3}{\rm{NH}}_3^ + $ , and 29.4 cmolc kg−1 by (CH 3 ) 2 NH 2 + ${{\rm{(C}}{{\rm{H}}_3}{\rm{)}}_2}{\rm{NH}}_2^ + $ . The extraction of Ca2+ by the large C 2 H 5 NH 3 + ${{\rm{C}}_2}{{\rm{H}}_5}{\rm{NH}}_3^ + $ cation (mean diameter = 0.46 nm) only decreased to 26.1 cmolc kg−1 , indicating that pore diameters were enlarged from ∼0.35 to 0.45 nm. The significant increase in Ca2+ retention after NaOH treatment was attributed to the dissociation of increased numbers of newly exposed silanol groups in the enlarged pores. The low Si/Al ratio of the NaOH-dissolved material (0.35) and the decreased intensity of the 348 cm−1 IR band also suggested selective dissolution of the pore region. For allophane with a high Si/Al ratio (0.99) and much accessory polymeric Si, dissolution of polymeric Si and of the pore region occurred simultaneously. Alkali treatment produced a smaller increase in pore size and Ca2+ retention for allophanes with large Si/Al ratios than for allophanes with small Si/Al ratios. It was concluded that by altering the dilute alkali treatment conditions and varying the Si/Al ratio of allophane, the extent of structural modification or pore enlargement of the hollow spheres might be controlled.
- 2007
Na-bearing white micas from Triassic rocks of the transition between the Maláguide and Alpujárride complexes (Betic Cordillera, Spain)
Tập 56 - Trang 344-358 - 2008
The structural significance of micas with Na-K intermediate composition, and their chemical and structural evolution at increasing metamorphic grade have been investigated in Triassic rocks from the transition between the Maláguide and Alpujárride complexes (Internal zones of the Betic Cordillera, Spain). Micas were studied by X-ray diffraction (XRD) and by scanning and transmission electron microscopy (SEM/TEM). Three samples, belonging to the late diagenesis and to the low and medium anchizone, were selected for this study. Na-bearing mica appears as submicroscopic packets intergrown in parallel with K-mica, becoming more compositionally uniform with increasing grade. The diagenetic sample contains illite, minor paragonite, and two main populations of intermediate Na-K micas, with average compositions Ms60Prg40 and Ms35Prg65, respectively, where Ms represents muscovite and Prg, paragonite. The lattice-fringe images of mica packets with intermediate compositions suggest the presence of random mixed-layered paragonite-muscovite. Under low anchizonal conditions the amount of discrete paragonite increases and the Na-K intermediate mica has a mean composition of Ms40Prg60. The TEM images suggest that the packets with intermediate composition are solid solutions of paragonite and illite. Micas with Na-K intermediate composition are lacking in the sample with the highest metamorphic grade. In this sample, paragonite and muscovite coexist with mica, with composition intermediate between paragonite and margarite. The lattice-fringe images of these Na-Ca-bearing packets suggest that they consist of irregularly shaped domains enriched either in Na or in Ca. Our data indicate that Na+K-bearing micas have several origins: detrital stacks of K- and Na-bearing micas coexist with authigenic phases, formed from dickite in the diagenetic, coarse-grained samples, and perhaps from smectite-bearing mixed-layers or detrital illite, in the fine-grained rocks. The changes observed at increasing metamorphic grade can be related to the influence of the lithology, the metamorphic grade, and the different geological settings. Intermediate Na-Ca mica appears to have grown from paragonite, with calcite as the source of Ca.