Hydrophobicity of Siloxane Surfaces in Smectites as Revealed by Aromatic Hydrocarbon Adsorption from Water
Tóm tắt
The nature of the siloxane surface in smectites was investigated by measuring the adsorption of aromatic hydrocarbons from water by organo-clays. The organo-clays were prepared by replacing the hydrophilic, inorganic exchange cations of a series of smectites with the small, hydrophobic organic cation, trimethylphenylammonium (TMPA). Smectites with a range in charge densities were used that resulted in different TMPA contents in the organo-clays. Adsorption isotherms of benzene, alkylbenzenes, and naphthalene from water by the TMPA-smectites indicated that sorption was inversely related to TMPA content. The Langmuir form of the isotherms suggests that the aromatic compounds adsorb to the clay surface. Possible adsorptive sites in TMPA-smectites are limited to the TMPA cations and the siloxane oxygen surfaces. Because sorption increased as layer charge and TMPA content decreased, the organic compounds must adsorb to the siloxane surfaces.
Calculations based on an adsorbed compound monolayer, which was estimated by fitting adsorption data to the Langmuir equation, and the N2 specific surface area of each TMPA-clay, indicate that the surface area occupied by each adsorbed molecule increases as the planar area of the molecule increases. This strongly indicates that the planar surfaces of the compounds adsorb directly to the clay surface. Apparently, the TMPA cations function to keep the smectite interlayers open. Interactions between the phenyl groups of TMPA cations on opposing interlayer clay surfaces may act to increase the size of the adsorptive regions. These results show that the siloxane surfaces of smectites can effectively adsorb aromatic hydrocarbons from water if the hydrophilic, inorganic exchange cations are replaced with small, hydrophobic organic cations. The strong adsorption of hydrophobic organic molecules from water demonstrates the hydrophobicity of the siloxane surfaces in smectites.
Từ khóa
Tài liệu tham khảo
Steel, 1980, Principles and Procedures of Statistics. A Biometrical Approach, 239
Graham, 1964, Adsorbed water on clays, Rev. Pure and Appl. Chem., 14, 81
Hendricks, 1938, Structure of kaolin and talc-pyrophyllite hydrates and their bearing on water sorption of clays, Am. Mineral., 23, 863
Sposito, 1984, The Surface Chemistry of Soils.
van Olphen, 1979, Data Handbook for Clay Materials and Other Non-metallic Minerals, 203
Hiemenz, 1986, Principles of Colloid and Surface Chemistry, 398
Gregg, 1976, The adsorption of gases on porous solids, Surface and Colloid Science, 9, 231