Biomedicines

Công bố khoa học tiêu biểu

Sắp xếp:  
Structural Determinant of β-Amyloid Formation: From Transmembrane Protein Dimerization to β-Amyloid Aggregates
Biomedicines - Tập 10 Số 11 - Trang 2753
Nicolas Papadopoulos, Núria Suelves, Florian Perrin, Devkee M. Vadukul, Céline Vrancx, Stefan N. Constantinescu, Pascal Kienlen‐Campard
Most neurodegenerative diseases have the characteristics of protein folding disorders, i.e., they cause lesions to appear in vulnerable regions of the nervous system, corresponding to protein aggregates that progressively spread through the neuronal network as the symptoms progress. Alzheimer’s disease is one of these diseases. It is characterized by two types of lesions: neurofibrillary tangles (NFTs) composed of tau proteins and senile plaques, formed essentially of amyloid peptides (Aβ). A combination of factors ranging from genetic mutations to age-related changes in the cellular context converge in this disease to accelerate Aβ deposition. Over the last two decades, numerous studies have attempted to elucidate how structural determinants of its precursor (APP) modify Aβ production, and to understand the processes leading to the formation of different Aβ aggregates, e.g., fibrils and oligomers. The synthesis proposed in this review indicates that the same motifs can control APP function and Aβ production essentially by regulating membrane protein dimerization, and subsequently Aβ aggregation processes. The distinct properties of these motifs and the cellular context regulate the APP conformation to trigger the transition to the amyloid pathology. This concept is critical to better decipher the patterns switching APP protein conformation from physiological to pathological and improve our understanding of the mechanisms underpinning the formation of amyloid fibrils that devastate neuronal functions.
Ultrasound and Microbubbles for Targeted Drug Delivery to the Lung Endothelium in ARDS: Cellular Mechanisms and Therapeutic Opportunities
Biomedicines - Tập 9 Số 7 - Trang 803
Rajiv Sanwal, Kushal Joshi, Mihails Ditmans, Scott Tsai, Warren L. Lee
Acute respiratory distress syndrome (ARDS) is characterized by increased permeability of the alveolar–capillary membrane, a thin barrier composed of adjacent monolayers of alveolar epithelial and lung microvascular endothelial cells. This results in pulmonary edema and severe hypoxemia and is a common cause of death after both viral (e.g., SARS-CoV-2) and bacterial pneumonia. The involvement of the lung in ARDS is notoriously heterogeneous, with consolidated and edematous lung abutting aerated, less injured regions. This makes treatment difficult, as most therapeutic approaches preferentially affect the normal lung regions or are distributed indiscriminately to other organs. In this review, we describe the use of thoracic ultrasound and microbubbles (USMB) to deliver therapeutic cargo (drugs, genes) preferentially to severely injured areas of the lung and in particular to the lung endothelium. While USMB has been explored in other organs, it has been under-appreciated in the treatment of lung injury since ultrasound energy is scattered by air. However, this limitation can be harnessed to direct therapy specifically to severely injured lungs. We explore the cellular mechanisms governing USMB and describe various permutations of cargo administration. Lastly, we discuss both the challenges and potential opportunities presented by USMB in the lung as a tool for both therapy and research.
Zinc Oxide Nanoparticles Exhibit Favorable Properties to Promote Tissue Integration of Biomaterials
Biomedicines - Tập 9 Số 10 - Trang 1462
Nadine Wiesmann, Simone Mendler, Christoph Raphael Buhr, Ulrike Ritz, Peer W. Kämmerer, Juergen Brieger
Due to the demographic change, medicine faces a growing demand for tissue engineering solutions and implants. Often, satisfying tissue regeneration is difficult to achieve especially when co-morbidities hamper the healing process. As a novel strategy, we propose the incorporation of zinc oxide nanoparticles (ZnO NPs) into biomaterials to improve tissue regeneration. Due to their wide range of biocompatibility and their antibacterial properties, ZnO NPs are already discussed for different medical applications. As there are versatile possibilities of modifying their form, size, and function, they are becoming increasingly attractive for tissue engineering. In our study, in addition to antibacterial effects of ZnO NPs, we show for the first time that ZnO NPs can foster the metabolic activity of fibroblasts as well as endothelial cells, both cell types being crucial for successful implant integration. With the gelatin sponge method performed on the chicken embryo’s chorioallantoic membrane (CAM), we furthermore confirmed the high biocompatibility of ZnO NPs. In summary, we found ZnO NPs to have very favorable properties for the modification of biomaterials. Here, incorporation of ZnO NPs could help to guide the tissue reaction and promote complication-free healing.
Immunomodulation of Skin Repair: Cell-Based Therapeutic Strategies for Skin Replacement (A Comprehensive Review)
Biomedicines - Tập 10 Số 1 - Trang 118
Shima Tavakoli, Marta Kisiel, Thomas Biedermann, Agnes S. Klar
The immune system has a crucial role in skin wound healing and the application of specific cell-laden immunomodulating biomaterials emerged as a possible treatment option to drive skin tissue regeneration. Cell-laden tissue-engineered skin substitutes have the ability to activate immune pathways, even in the absence of other immune-stimulating signals. In particular, mesenchymal stem cells with their immunomodulatory properties can create a specific immune microenvironment to reduce inflammation, scarring, and support skin regeneration. This review presents an overview of current wound care techniques including skin tissue engineering and biomaterials as a novel and promising approach. We highlight the plasticity and different roles of immune cells, in particular macrophages during various stages of skin wound healing. These aspects are pivotal to promote the regeneration of nonhealing wounds such as ulcers in diabetic patients. We believe that a better understanding of the intrinsic immunomodulatory features of stem cells in implantable skin substitutes will lead to new translational opportunities. This, in turn, will improve skin tissue engineering and regenerative medicine applications.
Molecular and Genetic Biomarkers in Idiopathic Pulmonary Fibrosis: Where Are We Now?
Biomedicines - Tập 11 Số 10 - Trang 2796
Ioannis Tomos, Ioannis Roussis, Andreas Μ. Matthaiou, Katerina Dimakou
Idiopathic pulmonary fibrosis (IPF) represents a chronic progressive fibrotic interstitial lung disease of unknown cause with an ominous prognosis. It remains an unprecedent clinical challenge due to its delayed diagnosis and unpredictable clinical course. The need for accurate diagnostic, prognostic and predisposition biomarkers in everyday clinical practice becomes more necessary than ever to ensure prompt diagnoses and early treatment. The identification of such blood biomarkers may also unravel novel drug targets against IPF development and progression. So far, the role of diverse blood biomarkers, implicated in various pathogenetic pathways, such as in fibrogenesis (S100A4), extracellular matrix remodelling (YKL-40, MMP-7, ICAM-1, LOXL2, periostin), chemotaxis (CCL-18, IL-8), epithelial cell injury (KL-6, SP-A, SP-D), autophagy and unfolded protein response has been investigated in IPF with various results. Moreover, the recent progress in genetics in IPF allows for a better understanding of the underlying disease mechanisms. So far, the causative mutations in pulmonary fibrosis include mutations in telomere-related genes and in surfactant-related genes, markers that could act as predisposition biomarkers in IPF. The aim of this review is to provide a comprehensive overview from the bench to bedside of current knowledge and recent insights on biomarkers in IPF, and to suggest future directions for research. Large-scale studies are still needed to confirm the exact role of these biomarkers.
Near Infrared Fluorescent Nanostructure Design for Organic/Inorganic Hybrid System
Biomedicines - Tập 9 Số 11 - Trang 1583
Kyohei Okubo, Masakazu Umezawa, Kohei Soga
Near infrared (NIR) light offers high transparency in biological tissue. Recent advances in NIR fluorophores including organic dyes and lanthanide-doped inorganic nanoparticles have realized the effective use of the NIR optical window for in vivo bioimaging and photodynamic therapy. The narrow energy level intervals used for electronic transition that involves NIR light, however, give rise to a need for guidelines for reducing heat emission in luminescence systems, especially in the development of organic/inorganic hybrid structures. This review presents an approach for employing the polarity and vibrational energy of ions and molecules that surround the luminescence centers for the development of such hybrid nanostructures. Multiphonon relaxation theory, formulated for dealing with heat release in ionic solids, is applied to describe the vibrational energy in organic or molecular systems, referred to as phonon in this review, and we conclude that surrounding the luminescence centers either with ions with low vibrational energy or molecules with small chemical polarity is the key to bright luminescence. NIR photoexcited phosphors and nanostructures in organic/inorganic mixed systems, designed based on the guidelines, for photodynamic therapy are reviewed.
β2-Adrenergic Receptor Expression and Intracellular Signaling in B Cells Are Highly Dynamic during Collagen-Induced Arthritis
Biomedicines - Tập 10 Số 8 - Trang 1950
Nadine Honke, Clemens J. Wiest, Georg Pongratz
The sympathetic nervous system (SNS) has either a pro-inflammatory or anti-inflammatory effect, depending on the stage of arthritis. In the past, treatment of arthritic B cells with a β2-adrenergic receptor (β2-ADR) agonist has been shown to attenuate arthritis. In this study, the expression and signaling of β2-ADR in B cells during collagen-induced arthritis (CIA) were investigated to provide an explanation of why only B cells from arthritic mice are able to improve CIA. Splenic B cells were isolated via magnetic-activated cell sorting (MACS). Adrenergic receptors on B cells and intracellular β2-ADR downstream molecules (G protein-coupled receptor kinase 2 (GRK-2), β-Arrestin 2, p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK1/2) and cAMP response element-binding protein (CREB)) were analyzed at different time points in naïve and arthritic B cells with and without stimulation of β2-ADR agonist terbutaline by flow cytometry. β2-ADR-expressing B cells increase during CIA without a change in receptor density. Moreover, we observed a profound downregulation of GRK-2 shortly after induction of arthritis and an increase in β-Arrestin 2 only at late stage of arthritis. The second messengers studied (p38, ERK1/2 and CREB) followed a biphasic course, characterized by a reduction at onset and an increase in established arthritis. Stimulation of CIA B cells with the β-ADR agonist terbutaline increased pp38 MAPK independent of the timepoint, while pERK1/2 and pCREB were enhanced only in the late phase of arthritis. The phosphorylation of p38 MAPK, ERK1/2 and CREB in the late phase of arthritis was associated with increased IL-10 produced by B10 cells. The change of β2-ADR expression and signaling during sustained inflammation might be an integral part of the switch from pro- to anti-inflammatory action of sympathetic mechanisms in late arthritis.
The Liquid Biopsy in the Management of Colorectal Cancer: An Overview
Biomedicines - Tập 8 Số 9 - Trang 308
Marco Vacante, Roberto Ciuni, Francesco Basile, Antonio Biondi
Currently, there is a crucial need for novel diagnostic and prognostic biomarkers with high specificity and sensitivity in patients with colorectal cancer. A “liquid biopsy” is characterized by the isolation of cancer-derived components, such as circulating tumor cells, circulating tumor DNA, microRNAs, long non-coding RNAs, and proteins, from peripheral blood or other body fluids and their genomic or proteomic assessment. The liquid biopsy is a minimally invasive and repeatable technique that could play a significant role in screening and diagnosis, and predict relapse and metastasis, as well as monitoring minimal residual disease and chemotherapy resistance in colorectal cancer patients. However, there are still some practical issues that need to be addressed before liquid biopsy can be widely used in clinical practice. Potential challenges may include low amounts of circulating tumor cells and circulating tumor DNA in samples, lack of pre-analytical and analytical consensus, clinical validation, and regulatory endorsement. The aim of this review was to summarize the current knowledge of the role of liquid biopsy in the management of colorectal cancer.
Inflammatory Mediators and Pain in Endometriosis: A Systematic Review
Biomedicines - Tập 9 Số 1 - Trang 54
Nikolaos Machairiotis, Sofia Vasilakaki, Nikolaos Thomakos
Background: pain is one of the main symptoms of endometriosis and it has a deleterious effect on a patients’ personal and social life. To date, the clinical management of pain includes prolonged medication use and, in some cases, surgery, both of which are disruptive events for patients. Hence, there is an urgency for the development of a sufficient non-invasive medical treatment. Inflammation is one of the causative factors of pain in endometriosis. It is well established that inflammatory mediators promote angiogenesis and interact with the sensory neurons inducing the pain signal; the threshold of pain varies and it depends on the state and location of the disease. The inhibition of inflammatory mediators’ synthesis might offer a novel and effective treatment of the pain that is caused by inflammation in endometriosis. Objectives: patients with endometriosis experience chronic pelvic pain, which is moderate to severe in terms of intensity. The objective of this systematic review is to highlight the inflammatory mediators that contribute to the induction of pain in endometriosis and present their biological mechanism of action. In addition, the authors aim to identify new targets for the development of novel treatments for chronic pelvic pain in patients with endometriosis. Data Sources: three databases (PubMed, Scopus, and Europe PMC) were searched in order to retrieve articles with the keywords ‘inflammation, pain, and endometriosis’ between the review period of 1 January 2016 to 31 December 2020. This review has been registered with PROSPERO (registry number: CRD42020171018). Eligibility Criteria: only original articles that presented the regulation of inflammatory mediators and related biological molecules in endometriosis and their contribution in the stimulation of pain signal were included. Data Extraction: two authors independently extracted data from articles, using predefined criteria. Results: the database search yielded 1871 articles, which were narrowed down to 56 relevant articles of interest according to the eligibility criteria. Conclusions: inflammatory factors that promote angiogenesis and neuroangiogenesis are promising targets for the treatment of inflammatory pain in endometriosis. Specifically, CXC chemokine family, chemokine fractalkine, and PGE2 have an active role in the induction of pain. Additionally, IL-1β appears to be the primary interleukin (IL), which stimulates the majority of the inflammatory factors that contribute to neuroangiogenesis along with IL-6. Finally, the role of Ninj1 and BDNF proteins needs further investigation.
Tổng số: 9   
  • 1