Biochemical Journal
SCIE-ISI SCOPUS (1945-2023)
1470-8728
0264-6021
Anh Quốc
Cơ quản chủ quản: Portland Press, Ltd.
Các bài báo tiêu biểu
The production of ROS (reactive oxygen species) by mammalian mitochondria is important because it underlies oxidative damage in many pathologies and contributes to retrograde redox signalling from the organelle to the cytosol and nucleus. Superoxide (O2•−) is the proximal mitochondrial ROS, and in the present review I outline the principles that govern O2•− production within the matrix of mammalian mitochondria. The flux of O2•− is related to the concentration of potential electron donors, the local concentration of O2 and the second-order rate constants for the reactions between them. Two modes of operation by isolated mitochondria result in significant O2•− production, predominantly from complex I: (i) when the mitochondria are not making ATP and consequently have a high Δp (protonmotive force) and a reduced CoQ (coenzyme Q) pool; and (ii) when there is a high NADH/NAD+ ratio in the mitochondrial matrix. For mitochondria that are actively making ATP, and consequently have a lower Δp and NADH/NAD+ ratio, the extent of O2•− production is far lower. The generation of O2•− within the mitochondrial matrix depends critically on Δp, the NADH/NAD+ and CoQH2/CoQ ratios and the local O2 concentration, which are all highly variable and difficult to measure in vivo. Consequently, it is not possible to estimate O2•− generation by mitochondria in vivo from O2•−-production rates by isolated mitochondria, and such extrapolations in the literature are misleading. Even so, the description outlined here facilitates the understanding of factors that favour mitochondrial ROS production. There is a clear need to develop better methods to measure mitochondrial O2•− and H2O2 formation in vivo, as uncertainty about these values hampers studies on the role of mitochondrial ROS in pathological oxidative damage and redox signalling.
Apoptosis is a major form of cell death, characterized initially by a series of stereotypic morphological changes. In the nematode Caenorhabditis elegans, the gene ced-3 encodes a protein required for developmental cell death. Since the recognition that CED-3 has sequence identity with the mammalian cysteine protease interleukin-1β-converting enzyme (ICE), a family of at least 10 related cysteine proteases has been identified. These proteins are characterized by almost absolute specificity for aspartic acid in the P1 position. All the caspases (ICE-like proteases) contain a conserved QACXG (where X is R, Q or G) pentapeptide active-site motif. Caspases are synthesized as inactive proenzymes comprising an N-terminal peptide (prodomain) together with one large and one small subunit. The crystal structures of both caspase-1 and caspase-3 show that the active enzyme is a heterotetramer, containing two small and two large subunits. Activation of caspases during apoptosis results in the cleavage of critical cellular substrates, including poly(ADP-ribose) polymerase and lamins, so precipitating the dramatic morphological changes of apoptosis. Apoptosis induced by CD95 (Fas/APO-1) and tumour necrosis factor activates caspase-8 (MACH/FLICE/Mch5), which contains an N-terminus with FADD (Fas-associating protein with death domain)-like death effector domains, so providing a direct link between cell death receptors and the caspases. The importance of caspase prodomains in the regulation of apoptosis is further highlighted by the recognition of adapter molecules, such as RAIDD [receptor-interacting protein (RIP)-associated ICH-1/CED-3-homologous protein with a death domain]/CRADD (caspase and RIP adapter with death domain), which binds to the prodomain of caspase-2 and recruits it to the signalling complex. Cells undergoing apoptosis following triggering of death receptors execute the death programme by activating a hierarchy of caspases, with caspase-8 and possibly caspase-10 being at or near the apex of this apoptotic cascade.
1. A new method is described for labelling proteins to high specific radioactivities with 125I. The protein is treated with a 125I-labelled acylating agent, iodinated 3-(4-hydroxyphenyl)propionic acid N-hydroxysuccinimide ester, which reacts with free amino groups in the protein molecule to attach the 125I-labelled groups by amide bonds. 2. Three protein hormones have been labelled by this method, human growth hormone, human thyroid-stimulating hormone and human luteinizing hormone. Specific radioactivities of up to 170, 120 and 55μCi/μg respectively have been obtained for these hormones. 3. The immunoreactivity of these labelled hormones has been investigated by using a radioimmunoassay system specific for each hormone. These preparations have also been compared with and found to be equal or superior to labelled hormones prepared by chemical substitution of 125I into tyrosine residues of the proteins by using the chloramine-t-oxidation procedure. 4. With some antisera the immunoreactivity of the antigen was diminished by the introduction of a single I atom into the tyrosyl groups, whereas antigen containing a single 125I-labelled 3-(4-hydroxyphenyl)propionamide group showed the same immunoreactivity as the unmodified antigen.
The amino acid sequences of 301 glycosyl hydrolases and related enzymes have been compared. A total of 291 sequences corresponding to 39 EC entries could be classified into 35 families. Only ten sequences (less than 5% of the sample) could not be assigned to any family. With the sequences available for this analysis, 18 families were found to be monospecific (containing only one EC number) and 17 were found to be polyspecific (containing at least two EC numbers). Implications on the folding characteristics and mechanism of action of these enzymes and on the evolution of carbohydrate metabolism are discussed. With the steady increase in sequence and structural data, it is suggested that the enzyme classification system should perhaps be revised.
Các cytokine loại IL-6 bao gồm IL-6, IL-11, LIF (yếu tố ức chế bạch cầu), OSM (oncostatin M), yếu tố dưỡng thần kinh mi, cardiotrophin-1 và cytokine giống cardiotrophin là một họ quan trọng của các chất trung gian tham gia điều hòa phản ứng cấp tính đối với tổn thương và nhiễm trùng. Bên cạnh chức năng của chúng trong viêm và đáp ứng miễn dịch, những cytokine này cũng đóng một vai trò quan trọng trong sự tạo máu, tái sinh gan và tế bào thần kinh, phát triển phôi và khả năng sinh sản. Rối loạn điều hòa tín hiệu cytokine loại IL-6 góp phần vào sự khởi phát và duy trì của nhiều bệnh lý như viêm khớp dạng thấp, bệnh viêm ruột, loãng xương, đa xơ cứng và các loại ung thư khác nhau (ví dụ như đa u tủy và ung thư tuyến tiền liệt). Các cytokine loại IL-6 phát huy tác dụng của mình thông qua các chất chuyển tín hiệu gp (glycoprotein) 130, thụ thể LIF và thụ thể OSM dẫn đến sự kích hoạt các dãy JAK/STAT (Janus kinase/chất chuyển và kích hoạt tín hiệu của phiên mã) và MAPK (proteinkinase hoạt hóa bởi yếu tố phát triển). Bài tổng quan này tập trung vào tiến bộ gần đây trong sự hiểu biết về cơ chế phân tử của dẫn truyền tín hiệu cytokine loại IL-6. Đặc biệt nhấn mạnh vào sự kết thúc và điều chỉnh của con đường tín hiệu JAK/STAT được hoà giải bởi các phosphatase tyrosine, các chất ức chế phản hồi SOCS (chất ức chế dẫn truyền cytokine) và các protein PIAS (protein ức chế liên kết STAT được hoạt hoá). Đồng thời, nghiên cứu cũng thảo luận về sự tương tác chéo giữa con đường JAK/STAT với các dãy dẫn truyền khác.
Transcriptional regulation in eukaryotes occurs within a chromatin setting, and is strongly influenced by the post-translational modification of histones, the building blocks of chromatin, such as methylation, phosphorylation and acetylation. Acetylation is probably the best understood of these modifications: hyperacetylation leads to an increase in the expression of particular genes, and hypoacetylation has the opposite effect. Many studies have identified several large, multisubunit enzyme complexes that are responsible for the targeted deacetylation of histones. The aim of this review is to give a comprehensive overview of the structure, function and tissue distribution of members of the classical histone deacetylase (HDAC) family, in order to gain insight into the regulation of gene expression through HDAC activity. SAGE (serial analysis of gene expression) data show that HDACs are generally expressed in almost all tissues investigated. Surprisingly, no major differences were observed between the expression pattern in normal and malignant tissues. However, significant variation in HDAC expression was observed within tissue types. HDAC inhibitors have been shown to induce specific changes in gene expression and to influence a variety of other processes, including growth arrest, differentiation, cytotoxicity and induction of apoptosis. This challenging field has generated many fascinating results which will ultimately lead to a better understanding of the mechanism of gene transcription as a whole.
Arginine is one of the most versatile amino acids in animal cells, serving as a precursor for the synthesis not only of proteins but also of nitric oxide, urea, polyamines, proline, glutamate, creatine and agmatine. Of the enzymes that catalyse rate-controlling steps in arginine synthesis and catabolism, argininosuccinate synthase, the two arginase isoenzymes, the three nitric oxide synthase isoenzymes and arginine decarboxylase have been recognized in recent years as key factors in regulating newly identified aspects of arginine metabolism. In particular, changes in the activities of argininosuccinate synthase, the arginases, the inducible isoenzyme of nitric oxide synthase and also cationic amino acid transporters play major roles in determining the metabolic fates of arginine in health and disease, and recent studies have identified complex patterns of interaction among these enzymes. There is growing interest in the potential roles of the arginase isoenzymes as regulators of the synthesis of nitric oxide, polyamines, proline and glutamate. Physiological roles and relationships between the pathways of arginine synthesis and catabolism in vivo are complex and difficult to analyse, owing to compartmentalized expression of various enzymes at both organ (e.g. liver, small intestine and kidney) and subcellular (cytosol and mitochondria) levels, as well as to changes in expression during development and in response to diet, hormones and cytokines. The ongoing development of new cell lines and animal models using cDNA clones and genes for key arginine metabolic enzymes will provide new approaches more clearly elucidating the physiological roles of these enzymes.
Correspondence may be addressed to either Dr. G. Wu (e-mail [email protected]) or Dr. S. M. Morris, Jr. (e-mail [email protected]) at the addresses given.