BMC Molecular and Cell Biology

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
Correction to: GSDB: a database of 3D chromosome and genome structures reconstructed from Hi-C data
BMC Molecular and Cell Biology - Tập 21 - Trang 1-1 - 2020
Oluwatosin Oluwadare, Max Highsmith, Douglass Turner, Erez Lieberman Aiden, Jianlin Cheng
An amendment to this paper has been published and can be accessed via the original article.
Circ-ATL1 silencing reverses the activation effects of SIRT5 on smooth muscle cellular proliferation, migration and contractility in intracranial aneurysm by adsorbing miR-455
BMC Molecular and Cell Biology - Tập 24 - Trang 1-10 - 2023
Jichong Xu, Chun Fang
Alterations in vascular smooth muscle cells (VSMCs) contribute to the pathogenesis of intracranial aneurysms (IAs). However, molecular mechanisms underlying these changes remain unknown. The present study aimed to characterize the molecular mechanisms underlying VSMC-mediated IAs. Expression of the circular RNA circ-ATL1 and microRNA miR-455 was detected in IAs by RT-qPCR. Interactions between circ-ATL1, miR-455 and SIRT5 were examined by luciferase reporter analysis and RT-qPCR. The regulatory roles of circ-ATL1, miR-455 and SIRT5 in VSMC migration, proliferation and phenotypic modulation were also examined by CCK8, Transwell® migration and western blot assays. Biochemical and bioinformatic techniques were used to demonstrate that circ-ATL1 and miR-455 participated in disparate biological processes relevant to aneurysm formation. Clinically, increased expression of circ-ATL1 and downregulated miR-455 expression were observed in IA patients compared with healthy subjects. Silencing of circ-ATL1 led to suppression of VSMC migration, proliferation and phenotypic modulation. Both SIRT5 and miR-455 were found to be downstream targets of circ-ATL1. SIRT5 upregulation or miR-455 inhibition reversed the inhibitory effects induced by circ-ATL1 silencing on VSMC proliferation, migration and phenotypic modulation. We found that VSMC phenotypic modulation by circ-ATL1 upregulation and miR-455 downregulation had a critical role in the development and formation of AIs. Specifically, circ-ATL1 downregulation reversed IA formation. Our data provide the theoretical basis for future studies on potential clinical treatment and prevention of IAs.
Downregulation of lncRNA CCAT1 enhances 5-fluorouracil sensitivity in human colon cancer cells
BMC Molecular and Cell Biology - Tập 20 - Trang 1-11 - 2019
Chun Yang, Yong Pan, Shao Ping Deng
The purpose of this study was to determine the aberrant expression of the long noncoding RNA (lncRNA) colon cancer-associated transcript 1 (CCAT1) in 5-fluorouracil-resistant colonic neoplasm cells and to elucidate its effects on the 5-fluorouracil sensitivity of human colonic neoplasm cells. The aberrant expression of lncRNAs in normal tissues and colonic neoplasm tissues was detected by microarray assay. qRT-PCR analysis was performed to assess CCAT1 expression levels in colonic neoplasm cell lines and corresponding normal tissues. After constructing the 5-FU-resistant cell lines and validating the resistance by measuring the IC50 value, the CCAT1 expression levels in parental and artificially resistant cell lines were determined by qRT-PCR. Transfection was used to modulate the expression of CCAT1. Cell proliferation and apoptosis were then detected by CCK-8 and flow cytometry, respectively. CCAT1 in colon cancer tissues was higher than that in noncancer tissues, and the levels of CCAT1 in HCT 116, SW1417, HT-29, and KM12 cell lines were higher than those in the human normal colon epithelial NCM460 cell line. Moreover, the expression levels of CCAT1 were high in HCT 116/5-FU and HT-29/5-FU cell lines, whose apoptosis rates induced by 5-FU were lower than those in corresponding parental cells. The results of qRT-PCR and CCK-8 assay showed that enhancement of lncRNA CCAT1 expression levels in HCT 116 and HT-29 cell lines increased their IC50 of 5-FU and decreased their apoptosis rates. Meanwhile, siRNA-CCAT1 effectively inhibited the expression of CCAT1 and enhanced the 5-FU-sensitivity of HCT 116/5-FU and HT-29/5-FU, in which apoptosis rates were increased at the same time. Downregulation of CCAT1 effectively reversed the resistance of HCT 116/5-FU and HT-29/5-FU cells to 5-FU chemotherapeutic, opening a new avenue in colon cancer therapy.
DUF3669, a “domain of unknown function” within ZNF746 and ZNF777, oligomerizes and contributes to transcriptional repression
BMC Molecular and Cell Biology - Tập 20 - Trang 1-23 - 2019
Mohannad Al Chiblak, Felix Steinbeck, Hans-Jürgen Thiesen, Peter Lorenz
ZNF746 and ZNF777 belong to a subset of the large Krüppel-associated box (KRAB) zinc finger (ZNF) transcription factor family. They contain, like four other members in human, an additional conserved domain, the “domain of unknown function 3669” (DUF3669). Previous work on members of this subfamily suggested involvement in transcriptional regulation and aberrant ZNF746 overexpression leads to neuronal cell death in Parkinson’s disease. Here we demonstrate that N-terminal protein segments of the ZNF746a major isoform and ZNF777 act in concert to exert moderate transcriptional repression activities. Full potency depended on the intact configuration consisting of DUF3669, a variant KRAB domain and adjacent sequences. While DUF3669 contributes an intrinsic weak inhibitory activity, the isolated KRAB-AB domains did not repress. Importantly, DUF3669 provides a novel protein-protein interaction interface and mediates direct physical interaction between the members of the subfamily in oligomers. The ZNF746 protein segment encoded by exons 5 and 6 boosted repressor potency, potentially due to the presence of an acceptor lysine for sumoylation at K189. Repressor activity of the potent canonical ZNF10 KRAB domain was not augmented by heterologous transfer of DUF3669, pointing to the importance of context for DUF3669’s impact on transcription. Neither ZNF746a nor ZNF777 protein segments stably associated with TRIM28 within cells. Isoform ZNF746b that contains, unlike the major isoform, a full-length KRAB-A subdomain, displayed substantially increased repressor potency. This increase is due to canonical mechanisms known for KRAB domains since it did not take place in HAP1 knockout models of TRIM28 and SETDB1. A glycine to glutamic acid replacement that complies with a bona fide conserved “MLE” sequence within KRAB-A led to a further strong gain in repressor potency to levels comparable to those of the canonical ZNF10 KRAB domain. Each gain of repressive activity was accompanied by an enhanced interaction with TRIM28 protein. DUF3669 adds a protein-protein interaction surface to a subgroup of KRAB-ZNF proteins within an N-terminal configuration with variant KRAB and adjacent sequences likely regulated by sumoylation. DUF3669 contributes to transcriptional repression strength and its homo- and hetero-oligomerization characteristics probably extended the regulatory repertoire of KRAB-ZNF transcription factors during amniote evolution.
A computational peptide model induces cancer cells’ apoptosis by docking Kringle 5 to GRP78
BMC Molecular and Cell Biology - Tập 24 - Trang 1-10 - 2023
Ibrahim Khater, Aaya Nassar
Cells can die through a process called apoptosis in both pathological and healthy conditions. Cancer development and progression may result from abnormal apoptosis. The 78-kDa glucose-regulated protein (GRP78) is increased on the surface of cancer cells. Kringle 5, a cell apoptosis agent, is bound to GRP78 to induce cancer cell apoptosis. Kringle 5 was docked to GRP78 using ClusPro 2.0. The interaction between Kringle 5 and GRP78 was investigated. The interacting amino acids were found to be localized in three areas of Kringle 5. The proposed peptide is made up of secondary structure amino acids that contain Kringle 5 interaction residues. The 3D structure of the peptide model amino acids was created using the PEP-FOLD3 web tool. The proposed peptide completely binds to the GRP78 binding site on the Kringle 5, signaling that it might be effective in the apoptosis of cancer cells.
Systematic identification of non-canonical transcription factor motifs
BMC Molecular and Cell Biology - - 2021
Luis Chumpitaz-Diaz, Md. Abul Hassan Samee, Katherine S. Pollard
Sequence-specific transcription factors (TFs) recognize motifs of related nucleotide sequences at their DNA binding sites. Upon binding at these sites, TFs regulate critical molecular processes such as gene expression. It is widely assumed that a TF recognizes a single “canonical” motif, although recent studies have identified additional “non-canonical” motifs for some TFs. A comprehensive approach to identify non-canonical DNA binding motifs and the functional importance of those motifs’ matches in the human genome is necessary for fully understanding the mechanisms of TF-regulated molecular processes in human cells. To address this need, we developed a statistical pipeline for in vitro HT-SELEX data that identifies and characterizes the distributions of non-canonical TF motifs in a stringent manner. Analyzing ~170 human TFs’ HT-SELEX data, we found non-canonical motifs for 19 TFs (11%). These non-canonical motifs occur independently of the TFs’ canonical motifs. Non-canonical motif occurrences in the human genome show similar evolutionary conservation to canonical motif occurrences, explain TF binding in locations without canonical motifs, and occur within gene promoters and epigenetically marked regulatory sequences in human cell lines and tissues. Our approach and collection of non-canonical motifs expand current understanding of functionally relevant DNA binding sites for human TFs.
Sperm capacitation and transcripts levels are altered by in vitro THC exposure
BMC Molecular and Cell Biology - Tập 24 Số 1
Vivien B. Truong, Ola S. Davis, Jade Gracey, Michael S. Neal, Jibran Y. Khokhar, Laura A. Favetta
Abstract Background Delta-9-tetrahydrocannabinol (THC) is the primary phytocannabinoid responsible for the psychoactive properties of cannabis and is known to interact with the endocannabinoid system, which is functionally present in the male reproductive system. Since cannabis consumption is the highest among reproductive aged males, the current study aimed to further investigate the effects of THC exposure to phenotypical, physiological, and molecular parameters in sperm. Bull sperm of known fertility were used as a translational model for human sperm and subjected to in vitro treatment with physiologically relevant experimental doses of THC. Sperm parameters, capacitation, apoptosis, and transcript levels were evaluated following treatment. Results Motility, morphology, and viability of bovine sperm was unaltered from THC exposure. However, 0.32µM of THC caused an increased proportion of capacitating sperm (p < 0.05) compared to control and vehicle group sperm. Transcriptome analysis revealed that 39 genes were found to be differentially expressed by 0.032µM THC exposure, 196 genes were differentially expressed by 0.32µM THC exposure, and 33 genes were differentially expressed by 3.2µM THC. Secondary analysis reveals pathways involving development, nucleosomes, ribosomes and translation, and cellular metabolism to be significantly enriched. Conclusion Phytocannabinoid exposure to sperm may adversely affect sperm function by stimulating premature capacitation. These findings also show for the first time that spermatozoal transcripts may be altered by THC exposure. These results add to previous research demonstrating the molecular effects of cannabinoids on sperm and warrant further research into the effects of cannabis on male fertility.
ECOD: identification of distant homology among multidomain and transmembrane domain proteins
BMC Molecular and Cell Biology - Tập 20 - Trang 1-11 - 2019
R. Dustin Schaeffer, Lisa Kinch, Kirill E. Medvedev, Jimin Pei, Hua Cheng, Nick Grishin
The manual classification of protein domains is approaching its 20th anniversary. ECOD is our mixed manual-automatic domain classification. Over time, the types of proteins which require manual curation has changed. Depositions with complex multidomain and multichain arrangements are commonplace. Transmembrane domains are regularly classified. Repeatedly, domains which are initially believed to be novel are found to have homologous links to existing classified domains. Here we present a brief summary of recent manual curation efforts in ECOD generally combined with specific case studies of transmembrane and multidomain proteins wherein manual curation was useful for discovering new homologous relationships. We present a new taxonomy for the classification of ABC transporter transmembrane domains. We examine alternate topologies of the leucine-specific (LS) domain of Leucine tRNA-synthetase. Finally, we elaborate on a distant homologous links between two helical dimerization domains.
Two paralogous znf143 genes in zebrafish encode transcriptional activator proteins with similar functions but expressed at different levels during early development
BMC Molecular and Cell Biology - Tập 21 - Trang 1-9 - 2020
Laura Huning, Gary R. Kunkel
ZNF143 is an important transcriptional regulator protein conserved in metazoans and estimated to bind over 2000 promoter regions of both messenger RNA and small nuclear RNA genes. The use of zebrafish is a useful model system to study vertebrate gene expression and development. Here we characterize znf143a, a novel paralog of znf143b, previously known simply as znf143 in zebrafish. This study reveals a comparison of quantitative and spatial expression patterns, transcriptional activity, and a knockdown analysis of both ZNF143 proteins. ZNF143a and ZNF143b have a fairly strong conservation with 65% amino acid sequence identity, and both are potent activators in transient transfection experiments. In situ hybridization analyses of both znf143 mRNAs show that these genes are expressed strongly in regions of the brain at 24 h post fertilization in zebrafish development. A transient knockdown analysis of znf143 expression from either gene using CRISPR interference revealed similar morphological defects in brain development, and caused brain abnormalities in up to 50% of injected embryos. Although present in the same tissues, znf143a is expressed at a higher level in early development which might confer an evolutionary benefit for the maintenance of two paralogs in zebrafish. znf143a encodes a strong activator protein with high expression in neural tissues during early embryogenesis in zebrafish. Similar to its paralogous gene, znf143b, both znf143 genes are required for normal development in zebrafish.
Intercellular transfer of mitochondrial DNA carrying metastasis-enhancing pathogenic mutations from high- to low-metastatic tumor cells and stromal cells via extracellular vesicles
BMC Molecular and Cell Biology - Tập 22 - Trang 1-16 - 2021
Keizo Takenaga, Nobuko Koshikawa, Hiroki Nagase
Mitochondrial DNA (mtDNA) carrying certain pathogenic mutations or single nucleotide variants (SNVs) enhances the invasion and metastasis of tumor cells, and some of these mutations are homoplasmic in tumor cells and even in tumor tissues. On the other hand, intercellular transfer of mitochondria and cellular components via extracellular vesicles (EVs) and tunneling nanotubes (TNTs) has recently attracted intense attention in terms of cell-to-cell communication in the tumor microenvironment. It remains unclear whether metastasis-enhancing pathogenic mutant mtDNA in tumor cells is intercellularly transferred between tumor cells and stromal cells. In this study, we investigated whether mtDNA with the NADH dehydrogenase subunit 6 (ND6) G13997A pathogenic mutation in highly metastatic cells can be horizontally transferred to low-metastatic cells and stromal cells in the tumor microenvironment. When MitoTracker Deep Red-labeled high-metastatic Lewis lung carcinoma A11 cells carrying the ND6 G13997A mtDNA mutation were cocultured with CellLight mitochondria-GFP-labeled low-metastatic P29 cells harboring wild-type mtDNA, bidirectional transfer of red- and green-colored vesicles, probably mitochondria-related EVs, was observed in a time-dependent manner. Similarly, intercellular transfer of mitochondria-related EVs occurred between A11 cells and α-smooth muscle actin (α-SMA)-positive cancer-associated fibroblasts (CAFs, WA-mFib), macrophages (RAW264.7) and cytotoxic T cells (CTLL-2). Intercellular transfer was suppressed by inhibitors of EV release. The large and small EV fractions (L-EV and S-EV, respectively) prepared from the conditioned medium by differential ultracentrifugation both were found to contain mtDNA, although only S-EVs were efficiently incorporated into the cells. Several subpopulations had evidence of LC3-II and contained degenerated mitochondrial components in the S-EV fraction, signaling to the existence of autophagy-related S-EVs. Interestingly, the S-EV fraction contained a MitoTracker-positive subpopulation, which was inhibited by the respiration inhibitor antimycin A, indicating the presence of mitochondria with membrane potential. It was also demonstrated that mtDNA was transferred into mtDNA-less ρ0 cells after coculture with the S-EV fraction. In syngeneic mouse subcutaneous tumors formed by a mixture of A11 and P29 cells, the mitochondria-related EVs released from A11 cells reached distantly positioned P29 cells and CAFs. These results suggest that metastasis-enhancing pathogenic mtDNA derived from metastatic tumor cells is transferred to low-metastatic tumor cells and stromal cells via S-EVs in vitro and in the tumor microenvironment, inferring a novel mechanism of enhancement of metastatic potential during tumor progression.
Tổng số: 214   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10