Systemic administration of c-Kit+ cells diminished pulmonary and vascular inflammation in rat model of chronic asthma
Tóm tắt
To circumvent some pitfalls related to acute status, chronic model of asthma is conceived to be more suitable approach to guarantee the conditions which are similar to human pulmonary disease. Here, possible therapeutic mechanisms were monitored by which c-kit+ bone marrow cells can attenuate vascular inflammation in rat model of chronic asthma. Data revealed c-Kit+ cells could significantly reduce pathological injures in asthmatic rats via modulating the expression of IL-4, INF-γ, ICAM-1 and VCAM-1 in lung tissues and TNF-α, IL-1β and NO levels in BALF (p < 0.001 to p < 0.05). Besides, c-Kit+ cells reduced increased levels of VCAM-1 evaluated by immunohistochemistry staining. In contrast to c-Kit+ cells, c-Kit− cells could not exert beneficial effects in the asthmatic conditions. Overall, we found that systemic administration of C-kit positive cells can diminish pulmonary and vascular inflammation of chronic asthmatic changes in a rat model. These cells are eligible to suppress inflammation and nitrosative stress in lung tissue coincides with the reduction of pathological changes. These data indicate that C-kit positive cells be used as an alternative cell source for the amelioration of asthmatic changes.
Tài liệu tham khảo
Afzal S, Ramzan K, Waqar AB. Alternative approaches for the treatment of Asthma and COPD: Focus on Cell-based therapies, Epigenetics, and Gene silencing approaches. Advancements in Life Sciences. 2020;7:181–9.
Rahbarghazi R, Keyhanmanesh R, Aslani MR, Hassanpour M, Ahmadi M. Bone marrow mesenchymal stem cells and condition media diminish inflammatory adhesion molecules of pulmonary endothelial cells in an ovalbumin-induced asthmatic rat model. Microvasc Res. 2019;121:63–70.
Nials AT, Uddin S. Mouse models of allergic asthma: acute and chronic allergen challenge. Dis Model Mech. 2008;1:213–20.
Ahmadi M, Rahbarghazi R, Shahbazfar A-A, Keyhanmanesh R. Monitoring IL-13 expression in relation to miRNA-155 and miRNA-133 changes following intra-tracheal administration of mesenchymal stem cells and conditioned media in ovalbumin-sensitized rats. The Thai Journal of Veterinary Medicine. 2018;48:347–55.
McMillan S, Lloyd C. Prolonged allergen challenge in mice leads to persistent airway remodelling. Clin Exp Allergy. 2004;34:497–507.
Kumar RK, Foster PS. Modeling allergic asthma in mice: pitfalls and opportunities. Am J Respir Cell Mol Biol. 2002;27:267–72.
Cruz FF, Rocco PRM. The potential of mesenchymal stem cell therapy for chronic lung disease. Expert Rev Respir Med. 2020;14:31–9.
Mirershadi F, Ahmadi M, Rezabakhsh A, Rajabi H, Rahbarghazi R, Keyhanmanesh R. Unraveling the therapeutic effects of mesenchymal stem cells in asthma. Stem Cell Res Ther. 2020;11:1–12.
Rahbarghazi R, Kihanmanesh R, Rezaie J, Mirershadi F, Heiran H, Saghaei Bagheri H, Saberianpour S, Rezabakhsh A, Delkhosh A, Bagheri Y. c-kit+ cells offer hopes in ameliorating asthmatic pathologies via regulation of miRNA-133 and-126. Iran J Basic Med Sci. 2021;24:369–76.
Srour N, Thébaud B. Stem cells in animal asthma models: a systematic review. Cytotherapy. 2014;16:1629–42.
Rolandsson Enes S, Weiss DJ. Cell therapy for lung disease: current status and future prospects. Current Stem Cell Reports. 2020;6:30–9.
Heiran H, Ahmadi M, Rahbarghazi R, Mir-ershadi F, Delkhosh A, Khaksar M, Heidarzadeh M, Keyhanmanesh R. C-Kit+ progenitors restore rat asthmatic lung function by modulation of T-bet and GATA-3 expression. Exp Physiol. 2020;105:1623–33.
Yang Y-G, Tian W-M, Zhang H, Li M, Shang Y-X. Nerve growth factor exacerbates allergic lung inflammation and airway remodeling in a rat model of chronic asthma. Exp Ther Med. 2013;6:1251–8.
Sheshpari S, Shahnazi M, Ahmadian S, Nouri M, Abbasi MM, Beheshti R, Rahbarghazi R, Honaramooz A, Mahdipour M. Intra-Ovarian Injection of Bone Marrow c-Kit+ Cells Induced Ovarian Rejuvenation in Menopausal Rats. 2020.
Zarafshan E, Rahbarghazi R, Rezaie J, Aslani MR, Saberianpour S, Ahmadi M, Keyhanmanesh R. Type 2 Diabetes Mellitus Provokes Rat Immune Cells Recruitment into the Pulmonary Niche by Up-regulation of Endothelial Adhesion Molecules. Adv Pharm Bull. 2022;12(1):176-82.
Keyhanmanesh R, Rahbarghazi R, Aslani MR, Hassanpour M, Ahmadi M. Systemic delivery of mesenchymal stem cells condition media in repeated doses acts as magic bullets in restoring IFN-γ/IL-4 balance in asthmatic rats. Life Sci. 2018;212:30–6.
Tibboel J, Keijzer R, Reiss I, de Jongste JC, Post M. Intravenous and intratracheal mesenchymal stromal cell injection in a mouse model of pulmonary emphysema. COPD. 2014;11:310–8.
Abreu SC, Antunes MA, Maron-Gutierrez T, Cruz FF, Ornellas DS, Silva AL, Diaz BL, Ab’Saber AM, Capelozzi VL, Xisto DG. Bone marrow mononuclear cell therapy in experimental allergic asthma: intratracheal versus intravenous administration. Respir Physiol Neurobiol. 2013;185:615–24.
Trzil JE, Masseau I, Webb TL, Chang CH, Dodam JR, Cohn LA, Liu H, Quimby JM, Dow SW, Reinero CR. Long-term evaluation of mesenchymal stem cell therapy in a feline model of chronic allergic asthma. Clin Exp Allergy. 2014;44:1546–57.
Marino F, Scalise M, Cianflone E, Mancuso T, Aquila I, Agosti V, Torella M, Paolino D, Mollace V, Nadal-Ginard B. Role of c-kit in myocardial regeneration and aging. Front Endocrinol. 2019;10:371.
Astori G, Soncin S, Cicero VL, Siclari F, Sürder D, Turchetto L, Soldati G, Moccetti T. Bone marrow derived stem cells in regenerative medicine as advanced therapy medicinal products. American journal of translational research. 2010;2:285.
Balkrishna A, Solleti SK, Singh H, Tomer M, Sharma N, Varshney A. Calcio-herbal formulation, Divya-Swasari-Ras, alleviates chronic inflammation and suppresses airway remodelling in mouse model of allergic asthma by modulating pro-inflammatory cytokine response. Biomedicine & Pharmacotherapy. 2020;126:110063.
Lin L-J, Huang HY. DFSG, a novel herbal cocktail with anti-asthma activity, suppressed MUC5AC in A549 cells and alleviated allergic airway hypersensitivity and inflammatory cell infiltration in a chronic asthma mouse model. Biomedicine & Pharmacotherapy. 2020;121:109584.
Biller H, Bade B, Matthys H, Luttmann W, Virchow J. Interferon-g secretion of peripheral blood CD81 T lymphocytes in patients with bronchial asthma: In vitro stimulus determines cytokine production. Clin ExpImmunol. 2001;200:199–205.
Mirershadi F, Ahmadi M, Rahbarghazi R, Heiran H, Keyhanmanesh R. C-Kit+ Cells Can Modulate Asthmatic Condition via Differentiation Into Pneumocyte-Like Cells and Alteration of Inflammatory Responses via ERK/NF-κB Pathway. 2021.