
Annual Review of Entomology
SCOPUS (1961-1963,1966-1967,1969-1979,1981-2023)SCIE-ISI
0066-4170
1545-4487
Mỹ
Cơ quản chủ quản: Annual Reviews Inc. , ANNUAL REVIEWS
Các bài báo tiêu biểu
▪ Abstract Botanical insecticides have long been touted as attractive alternatives to synthetic chemical insecticides for pest management because botanicals reputedly pose little threat to the environment or to human health. The body of scientific literature documenting bioactivity of plant derivatives to arthropod pests continues to expand, yet only a handful of botanicals are currently used in agriculture in the industrialized world, and there are few prospects for commercial development of new botanical products. Pyrethrum and neem are well established commercially, pesticides based on plant essential oils have recently entered the marketplace, and the use of rotenone appears to be waning. A number of plant substances have been considered for use as insect antifeedants or repellents, but apart from some natural mosquito repellents, little commercial success has ensued for plant substances that modify arthropod behavior. Several factors appear to limit the success of botanicals, most notably regulatory barriers and the availability of competing products (newer synthetics, fermentation products, microbials) that are cost-effective and relatively safe compared with their predecessors. In the context of agricultural pest management, botanical insecticides are best suited for use in organic food production in industrialized countries but can play a much greater role in the production and postharvest protection of food in developing countries.
Traditionally, measurement of the acute toxicity of pesticides to beneficial arthropods has relied largely on the determination of an acute median lethal dose or concentration. However, the estimated lethal dose during acute toxicity tests may only be a partial measure of the deleterious effects. In addition to direct mortality induced by pesticides, their sublethal effects on arthropod physiology and behavior must be considered for a complete analysis of their impact. An increasing number of studies and methods related to the identification and characterization of these effects have been published in the past 15 years. Review of sublethal effects reported in published literature, taking into account recent data, has revealed new insights into the sublethal effects of pesticides including effects on learning performance, behavior, and neurophysiology. We characterize the different types of sublethal effects on beneficial arthropods, focusing mainly on honey bees and natural enemies, and we describe the methods used in these studies. Finally, we discuss the potential for developing experimental approaches that take into account these sublethal effects in integrated pest management and the possibility of integrating their evaluation in pesticide registration procedures.
The fat body plays major roles in the life of insects. It is a dynamic tissue involved in multiple metabolic functions. One of these functions is to store and release energy in response to the energy demands of the insect. Insects store energy reserves in the form of glycogen and triglycerides in the adipocytes, the main fat body cell. Insect adipocytes can store a great amount of lipid reserves as cytoplasmic lipid droplets. Lipid metabolism is essential for growth and reproduction and provides energy needed during extended nonfeeding periods. This review focuses on energy storage and release and summarizes current understanding of the mechanisms underlying these processes in insects.
Declines in bumble bee species in the past 60 years are well documented in Europe, where they are driven primarily by habitat loss and declines in floral abundance and diversity resulting from agricultural intensification. Impacts of habitat degradation and fragmentation are likely to be compounded by the social nature of bumble bees and their largely monogamous breeding system, which renders their effective population size low. Hence, populations are susceptible to stochastic extinction events and inbreeding. In North America, catastrophic declines of some bumble bee species since the 1990s are probably attributable to the accidental introduction of a nonnative parasite from Europe, a result of global trade in domesticated bumble bee colonies used for pollination of greenhouse crops. Given the importance of bumble bees as pollinators of crops and wildflowers, steps must be taken to prevent further declines. Suggested measures include tight regulation of commercial bumble bee use and targeted use of environmentally comparable schemes to enhance floristic diversity in agricultural landscapes.
With a growing world population and increasingly demanding consumers, the production of sufficient protein from livestock, poultry, and fish represents a serious challenge for the future. Approximately 1,900 insect species are eaten worldwide, mainly in developing countries. They constitute quality food and feed, have high feed conversion ratios, and emit low levels of greenhouse gases. Some insect species can be grown on organic side streams, reducing environmental contamination and transforming waste into high-protein feed that can replace increasingly more expensive compound feed ingredients, such as fish meal. This requires the development of cost-effective, automated mass-rearing facilities that provide a reliable, stable, and safe product. In the tropics, sustainable harvesting needs to be assured and rearing practices promoted, and in general, the food resource needs to be revalorized. In the Western world, consumer acceptability will relate to pricing, perceived environmental benefits, and the development of tasty insect-derived protein products.
▪ Abstract Insecticide resistance is an increasing problem in many insect vectors of disease. Our knowledge of the basic mechanisms underlying resistance to commonly used insecticides is well established. Molecular techniques have recently allowed us to start and dissect most of these mechanisms at the DNA level. The next major challenge will be to use this molecular understanding of resistance to develop novel strategies with which we can truly manage resistance. State-of-the-art information on resistance in insect vectors of disease is reviewed in this context.
▪ Abstract Theoretical developments are helping us to comprehend the basic parameters governing the dynamics of the interactions between generalist predators and their many pest and nonpest prey. In practice, however, inter- and intraspecific interactions between generalist predators, and between the predators and their prey, within multispecies systems under the influence of rapidly changing biotic and abiotic variables are difficult to predict. We discuss trade-offs between the relative merits of specialists and generalists that allow both to be effective, and often complementary, under different circumstances. A review of manipulative field studies showed that in ∼75% of cases, generalist predators, whether single species or species assemblages, reduced pest numbers significantly. Techniques for manipulating predator numbers to enhance pest control at different scales are discussed. We now need to find ways of disentangling the factors influencing positive and negative interactions within natural enemy communities in order to optimize beneficial synergies leading to pest control.
Our knowledge of the molecular basis of odorant reception in insects has grown exponentially over the past decade. Odorant receptors (ORs) from moths, fruit flies, mosquitoes, and the honey bees have been deorphanized, odorant-degrading enzymes (ODEs) have been isolated, and the functions of odorant-binding proteins (OBPs) have been unveiled. OBPs contribute to the sensitivity of the olfactory system by transporting odorants through the sensillar lymph, but there are competing hypotheses on how they act at the end of the journey. A few ODEs that have been demonstrated to degrade odorants rapidly may act in signal inactivation alone or in combination with other molecular traps. Although ORs in Drosophila melanogaster respond to multiple odorants and seem to work in combinatorial code involving both periphery and antennal lobes, reception of sex pheromones by moth ORs suggests that their labeled lines rely heavily on selectivity at the periphery.
▪ Abstract This review examines potential impacts of transgenic cultivars on insect population dynamics and evolution. Experience with classically bred, insecticidal cultivars has demonstrated that a solid understanding of both the target insect's ecology and the cultivar's performance under varied field conditions will be essential for predicting area-wide effects of transgenic cultivars on pest and natural enemy dynamics. This experience has also demonstrated the evolutionary capacity of pests for adaptive response to insecticidal traits in crops. Biochemical and genetic studies of insect adaptation to the Bacillus thuringiensis (Bt) toxins expressed by currently marketed transgenic cultivars indicate a high risk for rapid adaptation if these cultivars are misused. Theoretical and practical issues involved in implementing strategies to delay pest adaptation to insecticidal cultivars are reviewed. Emphasis is placed on examining the “high dose”/refuge strategy that has become the goal of industry and regulatory authorities.