Anaesthesia
1365-2044
0003-2409
Anh Quốc
Cơ quản chủ quản: Wiley-Blackwell Publishing Ltd , WILEY
Các bài báo tiêu biểu
Difficult intubation has been classified into four grades, according to the view obtainable at laryngoscopy. Frequency analysis suggests that, in obstetrics, the main cause of trouble is grade 3, in which the epiglottis can be seen, but not the cords. This group is fairly rare so that a proportion of anaesthetists will not meet the problem in their first few years and may thus be unprepared for it in obstetrics. However the problem can be simulated in routine anaesthesia, so that a drill for managing it can be practised. Laryngoscopy is carried out as usual, then the blade is lowered so that the epiglottis descends and hides the cords. Intubation has to be done blind, using the Macintosh method. This can be helpful as part of the training before starting in the maternity department, supplementing the Aberdeen drill.
Emergency and difficult tracheal intubations are hazardous undertakings where successive laryngoscopy–hypoxaemia–re‐oxygenation cycles can escalate to airway loss and the ‘can't intubate, can't ventilate’ scenario. Between 2013 and 2014, we extended the apnoea times of 25 patients with difficult airways who were undergoing general anaesthesia for hypopharyngeal or laryngotracheal surgery. This was achieved through continuous delivery of transnasal high‐flow humidified oxygen, initially to provide pre‐oxygenation, and continuing as post‐oxygenation during intravenous induction of anaesthesia and neuromuscular blockade until a definitive airway was secured. Apnoea time commenced at administration of neuromuscular blockade and ended with commencement of jet ventilation, positive‐pressure ventilation or recommencement of spontaneous ventilation. During this time, upper airway patency was maintained with jaw‐thrust. Transnasal Humidified Rapid‐Insufflation Ventilatory Exchange (THRIVE) was used in 15 males and 10 females. Mean (SD [range]) age at treatment was 49 (15 [25–81]) years. The median (IQR [range]) Mallampati grade was 3 (2–3 [2–4]) and direct laryngoscopy grade was 3 (3–3 [2–4]). There were 12 obese patients and nine patients were stridulous. The median (IQR [range]) apnoea time was 14 (9–19 [5–65]) min. No patient experienced arterial desaturation < 90%. Mean (SD [range]) post‐apnoea end‐tidal (and in four patients, arterial) carbon dioxide level was 7.8 (2.4 [4.9–15.3]) kPa. The rate of increase in end‐tidal carbon dioxide was 0.15 kPa.min−1. We conclude that THRIVE combines the benefits of ‘classical’ apnoeic oxygenation with continuous positive airway pressure and gaseous exchange through flow‐dependent deadspace flushing. It has the potential to transform the practice of anaesthesia by changing the nature of securing a definitive airway in emergency and difficult intubations from a pressured stop–start process to a smooth and unhurried undertaking.
Despite current recommendations on the management of pre‐operative anaemia, there is no pragmatic guidance for the diagnosis and management of anaemia and iron deficiency in surgical patients. A number of experienced researchers and clinicians took part in an expert workshop and developed the following consensus statement. After presentation of our own research data and local policies and procedures, appropriate relevant literature was reviewed and discussed. We developed a series of best‐practice and evidence‐based statements to advise on patient care with respect to anaemia and iron deficiency in the peri‐operative period. These statements include: a diagnostic approach for anaemia and iron deficiency in surgical patients; identification of patients appropriate for treatment; and advice on practical management and follow‐up. We urge anaesthetists and peri‐operative physicians to embrace these recommendations, and hospital administrators to enable implementation of these concepts by allocating adequate resources.
Human malignant hyperthermia is a life‐threatening genetic sensitivity of skeletal muscles to volatile anaesthetics and depolarizing neuromuscular blocking drugs occurring during or after anaesthesia. The skeletal muscle relaxant dantrolene is the only currently available drug for specific and effective therapy of this syndrome in man. After its introduction, the mortality of malignant hyperthermia decreased from 80% in the 1960s to < 10% today. It was soon discovered that dantrolene depresses the intrinsic mechanisms of excitation–contraction coupling in skeletal muscle. However, its precise mechanism of action and its molecular targets are still incompletely known. Recent studies have identified the ryanodine receptor as a dantrolene‐binding site. A direct or indirect inhibition of the ryanodine receptor, the major calcium release channel of the skeletal muscle sarcoplasmic reticulum, is thought to be fundamental in the molecular action of dantrolene in decreasing intracellular calcium concentration. Dantrolene is not only used for the treatment of malignant hyperthermia, but also in the management of neuroleptic malignant syndrome, spasticity and Ecstasy intoxication. The main disadvantage of dantrolene is its poor water solubility, and hence difficulties are experienced in rapidly preparing intravenous solutions in emergency situations. Due to economic considerations, no other similar drugs have been introduced into routine clinical practice.
Peri‐operative SARS‐CoV‐2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS‐CoV‐2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre‐operative SARS‐CoV‐2 infection were compared with those without previous SARS‐CoV‐2 infection. The primary outcome measure was 30‐day postoperative mortality. Logistic regression models were used to calculate adjusted 30‐day mortality rates stratified by time from diagnosis of SARS‐CoV‐2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre‐operative SARS‐CoV‐2 diagnosis. Adjusted 30‐day mortality in patients without SARS‐CoV‐2 infection was 1.5% (95%CI 1.4–1.5). In patients with a pre‐operative SARS‐CoV‐2 diagnosis, mortality was increased in patients having surgery within 0–2 weeks, 3–4 weeks and 5–6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3–4.8), 3.9 (2.6–5.1) and 3.6 (2.0–5.2), respectively). Surgery performed ≥ 7 weeks after SARS‐CoV‐2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9–2.1)). After a ≥ 7 week delay in undertaking surgery following SARS‐CoV‐2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2–8.7) vs. 2.4% (95%CI 1.4–3.4) vs. 1.3% (95%CI 0.6–2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS‐CoV‐2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
The failure rate and complications were studied prospectively in 367 paediatric and adult patients who had received a thoracic or lumbar paravertebral block. The overall failure rate was 10.1%; adults 10.7%; children 6.2%. The frequency of complications were: hypotension: 4.6%; vascular puncture: 3.8%; pleural puncture: 1.1%; pneumothorax: 0.5%. Since these results are similar to those found with alternative methods, e.g. epidural, intrapleural and intercostal blocks, paravertebral block can be recommended as an effective, safe technique for unilateral analgesia in both adults and children.
Healthcare workers are at risk of infection during the severe acute respiratory syndrome coronavirus‐2 pandemic. International guidance suggests direct droplet transmission is likely and airborne transmission occurs only with aerosol‐generating procedures. Recommendations determining infection control measures to ensure healthcare worker safety follow these presumptions. Three mechanisms have been described for the production of smaller sized respiratory particles (‘aerosols’) that, if inhaled, can deposit in the distal airways. These include: laryngeal activity such as talking and coughing; high velocity gas flow; and cyclical opening and closure of terminal airways. Sneezing and coughing are effective aerosol generators, but all forms of expiration produce particles across a range of sizes. The 5‐μm diameter threshold used to differentiate droplet from airborne is an over‐simplification of multiple complex, poorly understood biological and physical variables. The evidence defining aerosol‐generating procedures comes largely from low‐quality case and cohort studies where the exact mode of transmission is unknown as aerosol production was never quantified. We propose that transmission is associated with time in proximity to severe acute respiratory syndrome coronavirus‐1 patients with respiratory symptoms, rather than the procedures per se. There is no proven relation between any aerosol‐generating procedure with airborne viral content with the exception of bronchoscopy and suctioning. The mechanism for severe acute respiratory syndrome coronavirus‐2 transmission is unknown but the evidence suggestive of airborne spread is growing. We speculate that infected patients who cough, have high work of breathing, increased closing capacity and altered respiratory tract lining fluid will be significant producers of pathogenic aerosols. We suggest several aerosol‐generating procedures may in fact result in less pathogen aerosolisation than a dyspnoeic and coughing patient. Healthcare workers should appraise the current evidence regarding transmission and apply this to the local infection prevalence. Measures to mitigate airborne transmission should be employed at times of risk. However, the mechanisms and risk factors for transmission are largely unconfirmed. Whilst awaiting robust evidence, a precautionary approach should be considered to assure healthcare worker safety.