Aequationes mathematicae
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Sắp xếp:
On a class of abstract convex cone valued functional equations
Aequationes mathematicae - Tập 94 - Trang 535-545 - 2019
We present an approach to solving a number of functional equations for functions with values in abstract convex cones. Such cones seem to be good generalizations of, e.g., families of nonempty compact and convex subsets or nonempty closed, bounded and convex subsets of a normed space. Moreover, we study some related stability problems.
L ∞-convergence of collocation and galerkin approximations to linear two-point parabolic problems
Aequationes mathematicae - Tập 11 - Trang 230-249 - 1974
Two semidiscrete collocation approximations using smooth cubic splines are developed as approximations to the solution of two-point linear parabolic boundary value problems.L
∞-convergence results are presented for these two approximations as well as the piecewise linear Galerkin approximation. Several computational examples are given to illustrate the convergence results and demonstrate the applicability of the method.
Constant terms, jagged partitions, and partitions with difference two at distance two
Aequationes mathematicae - - 2006
On the pairs of multiplicative functions satisfying some relations
Aequationes mathematicae - Tập 55 - Trang 1-14 - 1998
It is proved that if f and g are complex-valued multiplicative functions such that
$ g(2n + 1) - Af(n) \to 0 (n \to \infty) $
, for some
$ A \neq 0 $
, then either
$ f(n) \to 0 (n \to \infty) $
, or
$ f(n) = n^s $
,
$ 0 \le {\rm Re} s < 1 $
and
$ A = f(2), g(n) = f(n) $
for every odd n.
Caractérisation du module d'une fonction additive à l'aide d'une équation fonctionnelle
Aequationes mathematicae - Tập 47 - Trang 60-68 - 1994
SoitG un groupe abélien.
Thèorème 1:Une fonction f: G → ℝ est solution de l'équation:
$$\max \{ f(x + y),f(x - y)\} = f(x) + f(y)(x,y \in G)$$
si et seulement si: f(x) = |a(x)|, où a: G → ℝ est additive.
Théorème 2:On suppose que tout élément de G est divisible par 6. Alors f: G → ℝ est solution de:
$$\max \{ f(x + y),f(x - y)\} = f(x)f(y)(x,y \in G)$$
si et seulement si: f(x) ≡ 0 ou f(x) = exp|a(x)|, où a: G → ℝ est additive.
The Twenty-seventh International Symposium on Functional Equations, August 14–24, 1989, Bielsko-BiałKatowice—Kraków, Poland
Aequationes mathematicae - Tập 39 - Trang 264-329 - 1990
L 2-solutions ofy″ = q(t) y and a functional equation
Aequationes mathematicae - Tập 5 - Trang 127-128 - 1970
On the equality condition in Hölder's and Minkowski's inequalities
Aequationes mathematicae - Tập 45 - Trang 322-322 - 1993
Solutions of functional equations having bounded variation
Aequationes mathematicae - Tập 61 Số 3 - Trang 205-211 - 2001
On the definition of a probabilistic normed space
Aequationes mathematicae - Tập 43 - Trang 313-313 - 1992
Tổng số: 2,539
- 1
- 2
- 3
- 4
- 5
- 6
- 10