Remarks on hyperstability of the Cauchy functional equation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aczél J., Baker J.A., Djoković D.Ž., Kannappan P., Radó F.: Extensions of certain homomorphisms of subsemigroups to homorphisms of groups. Aequationes Math. 6, 263–271 (1971)
Aoki T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 64–66 (1950)
Borelli Forti C.: Solutions of a non-homogeneous Cauchy equation. Rad. Mat. 5, 213–222 (1989)
Bourgin D.G.: Approximately isometric and multiplicative transformations on continuous function rings. Duke Math. J. 16, 385–397 (1949)
Brzdȩk J.: On a generalization of the Cauchy functional equation. Aequationes Math. 46, 56–75 (1993)
Brzdȩk J., Pietrzyk A.: A note on stability of the general linear equation. Aequationes Math. 75, 267–270 (2008)
Ciepliński K.: Applications of fixed point theorems to the Hyers–Ulam stability of functional equations – a survey. Ann. Funct. Anal. 3, 151–164 (2012)
Ciepliński K.: Stability of multi-additive mappings in β-Banach spaces. Nonlinear Anal. 75, 4205–4212 (2012)
Czerwik S.: Functional equations and inequalities in several variables. World Scientific Publishing Co., River Edge (2002)
Davison T.M.K., Ebanks B.: Cocycles on cancellative semigroups. Publ. Math. Debrecen 46, 137–147 (1995)
Ebanks B., Kannappan P., Sahoo P.K.: Cauchy differences that depend on the product of arguments. Glasnik Mat. 27(47), 251–261 (1992)
Ebanks, B., Sahoo, P., Sander, W.: Characterizations of Information Measures. World Scientific, Singapore (1998)
Erdös J.: A remark on the paper “On some functional equations” by S. Kurepa. Glasnik Mat.-Fiz. Astronom. 14(2), 3–5 (1959)
Fenyö I., Forti G.-L.: On the inhomogeneous Cauchy functional equation. Stochastica 5, 71–77 (1981)
Fisher P., Słodkowski Z.: Christensen zero sets and measurable convex functions. Proc. Am. Math. Soc. 79, 449–453 (1980)
Fošner A.: On the generalized Hyers–Ulam stability of module left (m;n)-derivations. Aequationes Math. doi: 10.1007/s00010-012-0124-3
Găvruţa P.: A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431–436 (1994)
Hyers D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)
Hyers, D.H., Isac, G., Rassias Th.M.: Stability of Functional Equations in Several Variables. Birkhäuser, Boston (1998)
Járai A., Maksa Gy., Páles Zs.: On Cauchy-differences that are also quasisums. Publ. Math. Debrecen 65, 381–398 (2004)
Jessen B., Karpf J., Thorup A.: Some functional equations in groups and rings. Math. Scand. 22, 257–265 (1968)
Jung, S.-M.: Hyers–Ulam Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001)
Jung S.-M.: Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis. Springer Optimization and Its Applications, vol. 48. Springer, New York (2011)
Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Państwowe Wydawnictwo Naukowe & Uniwersytet Śla̧ski, Warszawa (1985)
Maksa Gy., Páles Zs.: Hyperstability of a class of linear functional equations. Acta Math. Acad. Paedag. Nyìregyháziensis 17, 107–112 (2001)
Piszczek, M.: The properties of functional inclusions and Hyers–Ulam stability. Aequationes Math. doi: 10.1007/s00010-012-0119-0
Rassias Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)
Rassias, Th.M., Isac, G.: Functional inequalities for approximately additive mappings. In: Rassias, Th.M., Tabor, J. (eds.) Stability of Mappings of Hyers–Ulam Type, pp. 117–125. Hadronic Press, Palm Harbor (1994)
Skof, F.: On the stability of functional equations on a restricted domain and related topics. In: Rassias, Th.M., Tabor, J. (eds.) Stability of Mappings of Hyers–Ulam Type, pp. 141–151. Hadronic Press, Palm Harbor (1994)