Remarks on hyperstability of the Cauchy functional equation

Aequationes mathematicae - Tập 86 Số 3 - Trang 255-267 - 2013
Janusz Brzdęk1
1Department of Mathematics, Pedagogical University, Podchora̧ żych 2, 30–084, Kraków, Poland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aczél J., Baker J.A., Djoković D.Ž., Kannappan P., Radó F.: Extensions of certain homomorphisms of subsemigroups to homorphisms of groups. Aequationes Math. 6, 263–271 (1971)

Aoki T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 64–66 (1950)

Borelli Forti C.: Solutions of a non-homogeneous Cauchy equation. Rad. Mat. 5, 213–222 (1989)

Bourgin D.G.: Approximately isometric and multiplicative transformations on continuous function rings. Duke Math. J. 16, 385–397 (1949)

Brzdȩk J.: On a generalization of the Cauchy functional equation. Aequationes Math. 46, 56–75 (1993)

Brzdȩk J.: On almost additive mappings. Bull. Aust. Math. Soc. 54, 281–290 (1996)

Brzdȩk J., Pietrzyk A.: A note on stability of the general linear equation. Aequationes Math. 75, 267–270 (2008)

Ciepliński K.: Applications of fixed point theorems to the Hyers–Ulam stability of functional equations – a survey. Ann. Funct. Anal. 3, 151–164 (2012)

Ciepliński K.: Stability of multi-additive mappings in β-Banach spaces. Nonlinear Anal. 75, 4205–4212 (2012)

Czerwik S.: Functional equations and inequalities in several variables. World Scientific Publishing Co., River Edge (2002)

Davison T.M.K., Ebanks B.: Cocycles on cancellative semigroups. Publ. Math. Debrecen 46, 137–147 (1995)

Ebanks B.: Generalized Cauchy difference functional equations. Aequationes Math. 70, 154–176 (2005)

Ebanks B.: Generalized Cauchy difference equations. II. Proc. Am. Math. Soc. 136, 3911–3919 (2008)

Ebanks B., Kannappan P., Sahoo P.K.: Cauchy differences that depend on the product of arguments. Glasnik Mat. 27(47), 251–261 (1992)

Ebanks, B., Sahoo, P., Sander, W.: Characterizations of Information Measures. World Scientific, Singapore (1998)

Erdös J.: A remark on the paper “On some functional equations” by S. Kurepa. Glasnik Mat.-Fiz. Astronom. 14(2), 3–5 (1959)

Fenyö I., Forti G.-L.: On the inhomogeneous Cauchy functional equation. Stochastica 5, 71–77 (1981)

 Fisher P., Słodkowski Z.: Christensen zero sets and measurable convex functions. Proc. Am. Math. Soc. 79, 449–453 (1980)

Fošner A.: On the generalized Hyers–Ulam stability of module left (m;n)-derivations. Aequationes Math. doi: 10.1007/s00010-012-0124-3

Gajda Z.: On stability of additive mappings. Int. J. Math. Math. Sci. 14, 431–434 (1991)

Găvruţa P.: A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431–436 (1994)

Hyers D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)

Hyers, D.H., Isac, G., Rassias Th.M.: Stability of Functional Equations in Several Variables. Birkhäuser, Boston (1998)

Járai A., Maksa Gy., Páles Zs.: On Cauchy-differences that are also quasisums. Publ. Math. Debrecen 65, 381–398 (2004)

Jessen B., Karpf J., Thorup A.: Some functional equations in groups and rings. Math. Scand. 22, 257–265 (1968)

Jung, S.-M.: Hyers–Ulam Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001)

Jung S.-M.: Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis. Springer Optimization and Its Applications, vol. 48. Springer, New York (2011)

Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Państwowe Wydawnictwo Naukowe & Uniwersytet Śla̧ski, Warszawa (1985)

Maksa Gy., Páles Zs.: Hyperstability of a class of linear functional equations. Acta Math. Acad. Paedag. Nyìregyháziensis 17, 107–112 (2001)

Moszner Z.: On the stability of functional equations. Aequationes Math. 77, 33–88 (2009)

Piszczek, M.: The properties of functional inclusions and Hyers–Ulam stability. Aequationes Math. doi: 10.1007/s00010-012-0119-0

Rassias Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)

Rassias Th.M.: On a modified Hyers–Ulam sequence. J. Math. Anal. Appl. 158, 106–113 (1991)

Rassias, Th.M., Isac, G.: Functional inequalities for approximately additive mappings. In: Rassias, Th.M., Tabor, J. (eds.) Stability of Mappings of Hyers–Ulam Type, pp. 117–125. Hadronic Press, Palm Harbor (1994)

Rätz J.: On orthogonally additive mappings. Aequationes Math. 28, 35–49 (1985)

Sahoo, P.K., Kannappan, P.: Introduction to Functional Equations. CRC Press, Boca Raton (2011)

Skof, F.: On the stability of functional equations on a restricted domain and related topics. In: Rassias, Th.M., Tabor, J. (eds.) Stability of Mappings of Hyers–Ulam Type, pp. 141–151. Hadronic Press, Palm Harbor (1994)

Szabó Gy.: A conditional Cauchy equation on normed spaces. Publ. Math. Debrecen 42, 265–271 (1993)

Szabó Gy.: Isosceles orthogonally additive mappings and inner product spaces. Publ. Math. Debrecen 46, 373–384 (1995)