iBuilding: trí tuệ nhân tạo trong các tòa nhà thông minh

Neural Computing and Applications - Tập 34 - Trang 875-897 - 2021
Will Serrano1
1The Bartlett, University College London, London, UK

Tóm tắt

Bài báo này trình bày về iBuilding: trí tuệ nhân tạo phân tán được tích hợp vào các Tòa nhà Thông minh trong ứng dụng Công nghiệp 4.0, cho phép thích ứng với môi trường bên ngoài và những người sử dụng tòa nhà khác nhau. Các tòa nhà đang trở nên thông minh hơn trong việc giám sát việc sử dụng tài sản, chức năng và không gian của chúng. Càng giám sát hoặc dự đoán được tòa nhà một cách hiệu quả, đầu tư thu được càng cao khi không gian hoặc năng lượng chưa được sử dụng có thể được phát triển lại hoặc thương mại hóa, từ đó giảm tiêu thụ năng lượng trong khi tăng tính năng. Bài báo này đề xuất trí tuệ nhân tạo phân tán được tích hợp vào một tòa nhà dựa trên mạng nơ-ron với cấu trúc học sâu. (1) Các nơ-ron cảm biến ở cấp thiết bị được phân tán qua tòa nhà thông minh để thu thập, lọc thông tin môi trường và dự đoán các giá trị tiếp theo. (2) Các nơ-ron quản lý dựa trên thuật toán học tăng cường ở cấp biên đưa ra dự đoán về các giá trị và xu hướng cho các nhà quản lý hoặc nhà phát triển tòa nhà để đưa ra các quyết định thương mại hoặc hoạt động có cơ sở. (3) Cuối cùng, các nơ-ron truyền dẫn dựa trên các thuật toán di truyền và bộ gen mã hóa, truyền tải thông tin iBuilding và cũng mắc xếp dữ liệu của nó hoàn toàn để tạo ra các cụm tòa nhà kết nối với nhau ở cấp độ đám mây. iBuilding dựa trên học phân tán đã được xác nhận bằng một bộ dữ liệu nghiên cứu công khai; kết quả cho thấy trí tuệ nhân tạo tích hợp vào tòa nhà thông minh cho phép giám sát theo thời gian thực và dự đoán thành công về các biến của nó. Khái niệm chính được đề xuất bởi bài viết này là thông tin đã học được từ iBuilding sau khi thích ứng với môi trường không bao giờ bị mất đi khi tòa nhà thay đổi theo thời gian hoặc bị ngừng hoạt động, mà sẽ được truyền tải cho các thế hệ tương lai.

Từ khóa

#trí tuệ nhân tạo #tòa nhà thông minh #học sâu #mạng nơ-ron #học tăng cường

Tài liệu tham khảo

Ghaffarianhoseini A, Berardi U, AlWaer H, Chang S, Halawa E, Ghaffarianhoseini A, Clements D (2016) What is an intelligent building? Analysis of recent interpretations from an international perspective. Archit Sci Rev 59(5):338–357 Kirschner M, Gerhart J (2005) The plausibility of life resolving Darwin’s dilemma. Yale University Press, London, pp 1–336 Hinton G, Nowlan S (1996) How learning can guide evolution. Complex Syst 1:495–502 Smith D, Bullmore E (2007) Small-world brain networks. Neuroscientist 12:512–523 Sporns O, Chialvo D, Kaiser M, Hilgetag C (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8(9):418–425 Clements D (1997) What do we mean by intelligent buildings? Autom Constr 6(5–6):395–400 Omar O (2018) Intelligent building, definitions, factors and evaluation criteria of selection. Alex Eng J 57:2903–2910 Leclercq A, Isaac H (2016) The new office: how coworking changes the work concept. J Bus Strateg 37(6):3–9 Hui JK, Zhang Y (2018) Sharing space: urban sharing, sharing a living space, and shared social spaces. Space Cult, pp 1–13 Yacoub G (2018) How do collaborative practices emerge in coworking spaces? Evidence from fintech start-ups. Acad Manag Proc 1:1–10 Honga T, Taylor-Langea S, D’Ocab S, Yanc D, Corgnati S (2016) Advances in research and applications of energy-related occupant behaviour in buildings. Energy Build 116:694–702 Masoso OT, Grobler LJ (2010) The dark side of occupants’ behaviour on building energy use. Energy Build 42:173–177 Hong T, Yan D, D’Oca S, Chen C (2017) Ten questions concerning occupant behaviour in buildings: the big Picture. Build Environ 114:518–530 Nguyen T, Aiello M (2013) Energy intelligent buildings based on user activity: a survey. Energy Build 56:244–257 Shaikh P, Nor N, Nallagownden P, Elamvazuthi I, Ibrahim T (2014) A review on optimized control systems for building energy and comfort management of smart sustainable buildings. Renew Sustain Energy Rev 34:409–429 Oldewurtel F, Sturzenegger D, Morari M (2013) Importance of occupancy information for building climate control. Appl Energy 101:521–532 Labeodan T, Zeiler W, Boxem G, Zhao Y (2015) Occupancy measurement in commercial office buildings for demand-driven control applications—a survey and detection system evaluation. Energy Build 93:303–314 Ko JH, Kong DS, Huh JH (2017) Baseline building energy modelling of cluster inverse model by using daily energy consumption in office buildings. Energy Build 140:317–323 Cetina KS, Tabares-Velascob PC, Novoselac A (2014) Appliance daily energy use in new residential buildings: use profiles and variation in time-of-use. Energy Build 84:716–726 Tüfekci P (2014) Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. Electr Power Energy Syst 60:126–140 Wang Z, Srinivasan RS (2017) A review of artificial intelligence-based building energy use prediction: contrasting the capabilities of single and ensemble prediction models. Renew Sustain Energy Rev 75:796–808 Tsanas A, Xifara A (2012) Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Build 49:560–567 Arghira N, Hawarah L, Ploix S, Jacomino M (2012) Prediction of appliances energy use in smart homes. Energy 48:128–134 Candanedo LM, Feldheim V, Deramaix D (2017) Data-driven prediction models of energy use of appliances in a low-energy house. Energy Build 140:81–97 Bi H, Gelenbe E (2014) A cooperative emergency navigation framework using mobile cloud computing. In: International symposium computer and information sciences, pp 41–48 Gelenbe E, Bi H (2014) Emergency navigation without an infrastructure. Sensors 14(8):15142–15162 Ghosh A, Chakraborty D, Law A (2018) Artificial intelligence in internet of things. Chin Assoc Artif Intell Trans Intell Technol 3(4):208–218 Osifeko M, Hancke G, Mahfouz A (2020) Artificial intelligence techniques for cognitive sensing in future IoT: state-of-the-art, potentials, and challenges. J Sens Actuator Netw 9(21):1–31 Zhang J (2020) Real-time detection of energy consumption of IoT network nodes based on artificial intelligence. Comput Commun 153:188–195 Alama F, Mehmoodb R, Katiba I, Albeshri A (2016) Analysis of eight data mining algorithms for smarter internet of things (IoT). Int Workshop Data Min IoT Syst Proc Comput Sci 98:437–442 Skouby K, Lynggaard P (2014) Smart home and smart city solutions enabled by 5G, IoT, AAI and CoT services. In: International conference on contemporary computing and informatics, pp 874–878 Lloret J, Tomas J, Canovas A, Parra L (2016) An integrated IoT architecture for smart metering. Internet of things. IEEE Commun Mag 54(12):50–57 Osuwa AA, Ekhoragbon EB, Fat LT (2017) Application of artificial intelligence in internet of things. In: International conference on computational intelligence and communication networks, pp 169–173 Shafique M, Theocharides T, Bouganis C, Hanif M, Khalid F, Hafız R, Rehman S (2018) An overview of next-generation architectures for machine learning: roadmap, opportunities and challenges in the IoT era. In: Design, automation and test in Europe conference and exhibition, pp 827–832 Rego A, Canovas A, Jiménez JM, Lloret J (2018) An intelligent system for video surveillance in IoT environments. IEEE Access 6:31580–31598 Liu L, Zhou B, Zou Z, Yeh S, Zheng L (2018) A smart unstaffed retail shop based on artificial intelligence and IoT. In: International workshop on computer-aided modelling and design of communication links and networks, pp 1–4 Zhou J, Wang Y, Ota K, Dong M (2019) AAIoT: accelerating artificial intelligence in IoT systems. IEEE Wirel Commun Lett 8(3):825–828 Soomro S, Miraz M, Prasanth A, Abdullah M (2018) Artificial intelligence enabled IoT: traffic congestion reduction in smart cities. In: Smart cities symposium, pp 1–6 Garcia I, Muttukrishnan R, Lloret J (2019) Human-centric AI for trustworthy IoT systems with explainable multilayer perceptrons. IEEE Access 7:125562–125574 Prutyanov V, Melentev N, Lopatkin D, Menshchikov A, Somov A (2019) Developing IoT devices empowered by artificial intelligence: experimental study. Global IoT Summit, pp 1–6 Gonzalez P, Lloret J, Taha M (2018) Architecture to integrate IoT networks using artificial intelligence in the cloud. In: International conference on computational science and computational intelligence, pp 996–1001 Lv Z, Han Y, Singh A, Manogaran G, Lv H (2021) Trustworthiness in industrial IoT systems based on artificial intelligence. IEEE Trans Industr Inf 17(2):1496–1504 Trakadas P et al (2020) An artificial intelligence-based collaboration approach in industrial IoT manufacturing: key concepts. Archit Ext Potential Appl Sens 20(19):5480 Adi E, Anwar A, Baig Z, Zeadally S (2020) Machine learning and data analytics for the IoT. Neural Comput Appl 32:16205–16233 Pramanik P, Pal S, Choudhury P (2018) Beyond automation: the cognitive IoT. Artificial intelligence brings sense to the internet of things. Cognitive computing for big data systems over IoT, pp 1–37 Gladence L, Anu V, Rathna R, Brumancia E (2020) Recommender system for home automation using IoT and artificial intelligence. J Ambient Intell Humaniz Comput 2020:1–9 Chiang M, Zhang T (2016) Fog and IoT: an overview of research opportunities. IEEE Internet Things J 3(6):854–864 Sodhro A, Pirbhulal S, Albuquerque V (2019) Artificial intelligence-driven mechanism for edge computing-based industrial applications. IEEE Trans Industr Inf 15(7):4235–4243 Jiang H (2019) Mobile fire evacuation system for large public buildings based on artificial intelligence and IoT. IEEE Access 7:64101–64109 Chen X, Hao X (2019) Feature reduction method for cognition and classification of IoT devices based on artificial intelligence. IEEE access 7:103291–103298 Debauche O, Mahmoudi S, Mahmoudi S, Manneback P, Manneback P, Lebeau F (2020) A new edge architecture for AI-IoT services deployment. Int Conf Mob Syst Pervasive Comput Proc Comput Sci 175:10–19 Ke R, Zhuang Y, Pu Z, Wang Y (2020) A smart, efficient, and reliable parking surveillance system with edge artificial intelligence on IoT devices. IEEE Trans Intell Transport Syst 2020:1–13 Yang S, Xu K, Cui L, Ming Z, Chen Z, Ming Z (2020) EBI-PAI: towards an efficient edge-based IoT platform for artificial intelligence. IEEE Internet Things J 2020:1–15 Hasan M, Islam M, Zarif MI, Hashem M (2019) Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches. Internet Things 7:100059 Cañedo J, Skjellum A (2016) Using machine learning to secure IoT systems. In: Annual conference on privacy, security and trust, pp 219–222 Xiao L, Wan X, Lu X, Zhang Y, Wu D (2018) IoT security techniques based on machine learning. IEEE Signal Process Mag 35(5):41–49 Farivar F, Sayad M, Jolfaei A, Alazab M (2020) Artificial intelligence for detection, estimation, and compensation of malicious attacks in nonlinear cyber-physical systems and industrial IoT. IEEE Trans Industr Inf 16(4):2716–2725 Hussain F, Hussain R, Hassan S, Hossain E (2020) Machine learning in IoT security: current solutions and future challenges. IEEE Commun Surv Tutor 22(3):1686–1721 Fang H, Qi A, Wang X (2020) Fast authentication and progressive authorization in large-scale IoT: how to leverage AI for security enhancement. IEEE Network 34(3):24–29 Ganesh R, Karthika P, Aravinda V (2019) Secure IoT systems using raspberry Pi machine learning artificial intelligence. In: International conference on computer networks and inventive communication technologies, pp 797–805 Shafique K, Khawaja BA, Sabir F, Qazi S, Mustaqim M (2020) Internet of things (IoT) for next-generation smart systems: a review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access 8:23022–23040 Wang D, Chen D, Song B, Guizani N, Yu X, Du X (2018) From IoT to 5G I-IoT: the next generation IoT-based intelligent algorithms and 5G technologies. IEEE Commun Mag 56:114–120 Javaid N, Sher A, Nasir H, Guizani N (2018) Intelligence in IoT-based 5G networks: opportunities and challenges. IEEE Commun Mag 56(10):94–100 Kiss P, Reale A, Ferrari CJ, Istenes Z (2018) Deployment of IoT applications on 5G edge. In: IEEE international conference future IoT technologies, pp 1–9 Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735–1780 Gelenbe E (1989) Random neural networks with negative and positive signals and product form solution. Neural Comput 1:502–510 Gelenbe E (1993) Learning in the recurrent random neural network. Neural Comput 5:154–164 Gelenbe E (2004) Cognitive Packet Network. Patent US 6804201:B1 Gelenbe E, Xu Z, Seref E (1999) Cognitive packet networks. In: International conference on tools with artificial intelligence, pp 47–54 Huang G, Zhu Q, Siew C (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501 Huang G, Chen L, Siew C (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Networks 17(4):879–892 Gelenbe E, Yin Y (2016) Deep learning with random neural networks. In: International joint conference on neural networks, pp 1633–1638 Yin Y, Gelenbe E (2016) Deep learning in multi-layer architectures of dense nuclei. CoRR abs/1609.07160, pp 1–10 Serrano W (2018) The random neural network with a genetic algorithm and deep learning clusters in fintech: smart investment. In: IFIP international conference on artificial intelligence applications and innovations, pp 297–310 Serrano W (2019) Genetic and deep learning clusters based on neural networks for management decision structures. Neural Comput Appl 2019:1–25