dcor: Distance correlation and energy statistics in Python
Tài liệu tham khảo
Szekely, 1989
Szekely, 2002
Székely, 2013, Energy statistics: A class of statistics based on distances, J Statist Plann Inference, 143, 1249, 10.1016/j.jspi.2013.03.018
Székely, 2004, Testing for equal distributions in high dimensions, InterStat, 5, 1249
Kim, 2009, Using labeled data to evaluate change detectors in a multivariate streaming environment, Signal Process, 89, 2529, 10.1016/j.sigpro.2009.04.011
Rizzo, 2010, DISCO analysis: A nonparametric extension of analysis of variance, Ann Appl Stat, 4, 1034, 10.1214/09-AOAS245
Székely, 2005, A new test for multivariate normality, J Multivariate Anal, 93, 58, 10.1016/j.jmva.2003.12.002
Rizzo, 2009, New goodness-of-fit tests for Pareto distributions, ASTIN Bull, 39, 691, 10.2143/AST.39.2.2044654
Yang, 2012
Szekely, 2005, Hierarchical clustering via joint between-within distances: Extending Ward’s minimum variance method, J Classification, 22, 151, 10.1007/s00357-005-0012-9
Székely, 2007, Measuring and testing dependence by correlation of distances, Ann Statist, 35, 2769, 10.1214/009053607000000505
Zhang, 2014, Systemic risk and causality dynamics of the world international shipping market, Phys A Stat Mech Appl, 415, 43, 10.1016/j.physa.2014.07.068
Yenigün, 2015, Variable selection in regression using maximal correlation and distance correlation, J Stat Comput Simul, 85, 1692, 10.1080/00949655.2014.895354
Kasieczka, 2020, Robust jet classifiers through distance correlation, Phys Rev Lett, 125, 10.1103/PhysRevLett.125.122001
Ramos-Carreño, 2022
Rizzo, 2022
Matteson, 2014, A nonparametric approach for multiple change point analysis of multivariate data, J Amer Statist Assoc, 109, 334, 10.1080/01621459.2013.849605
Laarne, 2021, Ennemi: Non-linear correlation detection with mutual information, SoftwareX, 14, 10.1016/j.softx.2021.100686
Székely, 2014, Partial distance correlation with methods for dissimilarities, Ann Statist, 42, 2382, 10.1214/14-AOS1255
Huo, 2016, Fast computing for distance covariance, Technometrics, 58, 435, 10.1080/00401706.2015.1054435
Chaudhuri, 2019, A fast algorithm for computing distance correlation, Comput Statist Data Anal, 135, 15, 10.1016/j.csda.2019.01.016
Adelson-Velskii, 1962, An algorithm for organization of information, Proc USSR Acad Sci, 146, 263
Székely, 2017, The energy of data, Annu Rev Stat Appl, 4, 447, 10.1146/annurev-statistics-060116-054026
Lam, 2015, Numba: A LLVM-based Python JIT compiler, 1
Edelmann, 2022
Seabold S, Perktold J. statsmodels: Econometric and Statistical Modeling with Python. In: 9th Python in science conference. 2010.
Panda, 2021
Team, 2020
Consortium for Python Data API Standards. Python Array API Standard. URL https://data-apis.org/array-api.
Okuta, 2017, CuPy: A NumPy-compatible library for NVIDIA GPU calculations
Dask Development Team, 2016
Abadi, 2015
Markham, 2020, MeDIL: A Python package for causal modelling, 621
Runge, 2022
Zhelezniak, 2019, Correlations between word vector sets, 77
Kayal, 2021, Unsupervised sentence-embeddings by manifold approximation and projection, 1
Synthesized, 2022
Menvouta, 2020
Ramos-Carreño, 2022
Kharyuk, 2018, Employing fingerprinting of medicinal plants by means of LC-MS and machine learning for species identification task, Sci Rep, 8, 17053, 10.1038/s41598-018-35399-z
Benowitz M. Hedgecraft: A Portfolio Management Algorithm for the 21st Century. URL https://github.com/mayabenowitz/Hedgecraft.