dcor: Distance correlation and energy statistics in Python

SoftwareX - Tập 22 - Trang 101326 - 2023
Carlos Ramos-Carreño1, José L. Torrecilla2
1Department of Computer Science, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
2Department of Mathematics, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain

Tài liệu tham khảo

Szekely, 1989

Szekely, 2002

Székely, 2013, Energy statistics: A class of statistics based on distances, J Statist Plann Inference, 143, 1249, 10.1016/j.jspi.2013.03.018

Rizzo, 2016, Energy distance, Wiley Interdiscip Rev Comput Stat, 8, 27, 10.1002/wics.1375

Székely, 2004, Testing for equal distributions in high dimensions, InterStat, 5, 1249

Kim, 2009, Using labeled data to evaluate change detectors in a multivariate streaming environment, Signal Process, 89, 2529, 10.1016/j.sigpro.2009.04.011

Rizzo, 2010, DISCO analysis: A nonparametric extension of analysis of variance, Ann Appl Stat, 4, 1034, 10.1214/09-AOAS245

Székely, 2005, A new test for multivariate normality, J Multivariate Anal, 93, 58, 10.1016/j.jmva.2003.12.002

Rizzo, 2009, New goodness-of-fit tests for Pareto distributions, ASTIN Bull, 39, 691, 10.2143/AST.39.2.2044654

Yang, 2012

Szekely, 2005, Hierarchical clustering via joint between-within distances: Extending Ward’s minimum variance method, J Classification, 22, 151, 10.1007/s00357-005-0012-9

Székely, 2007, Measuring and testing dependence by correlation of distances, Ann Statist, 35, 2769, 10.1214/009053607000000505

Zhang, 2014, Systemic risk and causality dynamics of the world international shipping market, Phys A Stat Mech Appl, 415, 43, 10.1016/j.physa.2014.07.068

Yenigün, 2015, Variable selection in regression using maximal correlation and distance correlation, J Stat Comput Simul, 85, 1692, 10.1080/00949655.2014.895354

Kasieczka, 2020, Robust jet classifiers through distance correlation, Phys Rev Lett, 125, 10.1103/PhysRevLett.125.122001

Ramos-Carreño, 2022

Rizzo, 2022

Matteson, 2014, A nonparametric approach for multiple change point analysis of multivariate data, J Amer Statist Assoc, 109, 334, 10.1080/01621459.2013.849605

Laarne, 2021, Ennemi: Non-linear correlation detection with mutual information, SoftwareX, 14, 10.1016/j.softx.2021.100686

Székely, 2014, Partial distance correlation with methods for dissimilarities, Ann Statist, 42, 2382, 10.1214/14-AOS1255

Dueck, 2014, The affinely invariant distance correlation, Bernoulli, 20, 2305, 10.3150/13-BEJ558

Huo, 2016, Fast computing for distance covariance, Technometrics, 58, 435, 10.1080/00401706.2015.1054435

Chaudhuri, 2019, A fast algorithm for computing distance correlation, Comput Statist Data Anal, 135, 15, 10.1016/j.csda.2019.01.016

Adelson-Velskii, 1962, An algorithm for organization of information, Proc USSR Acad Sci, 146, 263

Székely, 2017, The energy of data, Annu Rev Stat Appl, 4, 447, 10.1146/annurev-statistics-060116-054026

Lam, 2015, Numba: A LLVM-based Python JIT compiler, 1

Edelmann, 2022

Seabold S, Perktold J. statsmodels: Econometric and Statistical Modeling with Python. In: 9th Python in science conference. 2010.

Panda, 2021

Vallat, 2018, Pingouin: Statistics in Python, J Open Source Softw, 3, 1026, 10.21105/joss.01026

Team, 2020

Consortium for Python Data API Standards. Python Array API Standard. URL https://data-apis.org/array-api.

Okuta, 2017, CuPy: A NumPy-compatible library for NVIDIA GPU calculations

Dask Development Team, 2016

Abadi, 2015

Markham, 2020, MeDIL: A Python package for causal modelling, 621

Runge, 2022

Zhelezniak, 2019, Correlations between word vector sets, 77

Kayal, 2021, Unsupervised sentence-embeddings by manifold approximation and projection, 1

Synthesized, 2022

Menvouta, 2020

Ramos-Carreño, 2022

Kharyuk, 2018, Employing fingerprinting of medicinal plants by means of LC-MS and machine learning for species identification task, Sci Rep, 8, 17053, 10.1038/s41598-018-35399-z

Benowitz M. Hedgecraft: A Portfolio Management Algorithm for the 21st Century. URL https://github.com/mayabenowitz/Hedgecraft.

Richardson J. TuneTA: Intelligently Optimizes Technical Indicators and Optionally Selects the Least Intercorrelated for Use in Machine Learning Models. URL https://github.com/jmrichardson/tuneta.