circRNAs Signature as Potential Diagnostic and Prognostic Biomarker for Diabetes Mellitus and Related Cardiovascular Complications

Cells - Tập 9 Số 3 - Trang 659
Mohamed Zaiou1
1School of Pharmacy, Institut Jean-Lamour, The University of Lorraine, 7 Avenue de la Foret de Haye, CEDEX BP 90170, 54500 Vandoeuvre les Nancy, France

Tóm tắt

Circular RNAs (circRNAs) belong to the ever-growing class of naturally occurring noncoding RNAs (ncRNAs) molecules. Unlike linear RNA, circRNAs are covalently closed transcripts mostly generated from precursor-mRNA by a non-canonical event called back-splicing. They are highly stable, evolutionarily conserved, and widely distributed in eukaryotes. Some circRNAs are believed to fulfill a variety of functions inside the cell mainly by acting as microRNAs (miRNAs) or RNA-binding proteins (RBPs) sponges. Furthermore, mounting evidence suggests that the misregulation of circRNAs is among the first alterations in various metabolic disorders including obesity, hypertension, and cardiovascular diseases. More recent research has revealed that circRNAs also play a substantial role in the pathogenesis of diabetes mellitus (DM) and related vascular complications. These findings have added a new layer of complexity to our understanding of DM and underscored the need to reexamine the molecular pathways that lead to this disorder in the context of epigenetics and circRNA regulatory mechanisms. Here, I review current knowledge about circRNAs dysregulation in diabetes and describe their potential role as innovative biomarkers to predict diabetes-related cardiovascular (CV) events. Finally, I discuss some of the actual limitations to the promise of these RNA transcripts as emerging therapeutics and provide recommendations for future research on circRNA-based medicine.

Từ khóa


Tài liệu tham khảo

Shepherd, 1999, Glucose transporters and insulin action--implications for insulin resistance and diabetes mellitus, N. Engl. J. Med., 341, 248, 10.1056/NEJM199907223410406

Cho, 2018, IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045, Diabetes Res. Clin. Pract., 138, 271, 10.1016/j.diabres.2018.02.023

Rines, 2016, Targeting hepatic glucose metabolism in the treatment of type 2 diabetes, Nat. Rev. Drug. Discov., 15, 786, 10.1038/nrd.2016.151

American Diabetes Association (2007). Standards of medical care in diabetes-2007. Diabetes Care, 30, S4–S41.

Ahlqvist, 2018, Novel subgroups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of six variables, Lancet Diabetes Endocrinol., 6, 361, 10.1016/S2213-8587(18)30051-2

Ling, 2009, Epigenetics: A molecular link between environmental factors and type 2 diabetes, Diabetes, 58, 2718, 10.2337/db09-1003

Kadamkode, 2014, Micro RNA: An epigenetic regulator of type 2 diabetes, Microrna, 3, 86, 10.2174/2211536603666141118232514

Felsenfeld, G.A. (2014). Brief history of epigenetics. Cold Spring Harb. Perspect. Biol., 6.

Keating, 2015, Epigenetics and metabolism, Circ. Res., 116, 715, 10.1161/CIRCRESAHA.116.303936

Leung, 2018, Long Noncoding RNAs in Diabetes and Diabetic Complications, Antioxid. Redox. Signal, 29, 1064, 10.1089/ars.2017.7315

Tian, 2018, The interplay between noncoding RNAs and insulin in diabetes, Cancer Lett., 419, 53, 10.1016/j.canlet.2018.01.038

Chen, 2016, The biogenesis and emerging roles of circular RNAs, Nat. Rev. Mol. Cell. Biol., 17, 205, 10.1038/nrm.2015.32

Kristensen, L.S., Andersen, M.S., Stagsted, L.V.W., Ebbesen, K.K., Hansen, T.B., and Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet.

Li, 2018, The Biogenesis, Functions, and Challenges of Circular RNAs, Mol. Cell., 71, 428, 10.1016/j.molcel.2018.06.034

Patop, I.L., Wüst, S., and Kadener, S. (2019). Past, present, and future of circRNAs. EMBO J., 8.

Salzman, J., Gawad, C., Wang, P.L., Lacayo, N., and Brown, P.O. (2012). Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One, 7.

Memczak, 2013, Circular RNAs are a large class of animal RNAs with regulatory potency, Nature, 495, 333, 10.1038/nature11928

You, 2015, Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity, Nat. Neurosci., 18, 603, 10.1038/nn.3975

Hansen, 2013, Natural RNA circles function as efficient microRNA sponges, Nature, 495, 384, 10.1038/nature11993

Thomson, 2016, Endogenous microRNA sponges: Evidence and controversy, Nat. Rev. Genet., 17, 272, 10.1038/nrg.2016.20

Piwecka, M., Glažar, P., Hernandez-Miranda, L.R., Memczak, S., Wolf, S.A., Rybak-Wolf, A., Filipchyk, A., Klironomos, F., Cerda Jara, C.A., and Fenske, P. (2017). Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science, 357.

Boeckel, 2015, Identification and Characterization of Hypoxia-Regulated Endothelial Circular RNA, Circ. Res., 117, 884, 10.1161/CIRCRESAHA.115.306319

Jeck, 2014, Detecting and characterizing circular RNAs, Nat. Biotechnol., 32, 453, 10.1038/nbt.2890

Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., Luo, Y., Lyu, D., Li, Y., and Shi, G. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun.

Meyer, 2014, circRNA biogenesis competes with pre-mRNA splicing, Mol. Cell, 56, 55, 10.1016/j.molcel.2014.08.019

Abdelmohsen, 2017, Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1, RNA Biol., 14, 361, 10.1080/15476286.2017.1279788

Holdt, L.M., Sass, K., Pichler, G., Kulak, N.A., Wilfert, W., Kohlmaier, A., Herbst, A., Northoff, B.H., Nicolaou, A., and Kohlmaier, A. (2016). Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat. Commun., 7.

Li, 2015, Exon-intron circular RNAs regulate transcription in the nucleus, Nat. Struct. Mol. Biol., 22, 256, 10.1038/nsmb.2959

Zhang, 2013, Circular intronic long noncoding RNAs, Mol. Cell., 51, 792, 10.1016/j.molcel.2013.08.017

Zhao, 2017, Circular RNA participates in the carcinogenesis and the malignant behavior of cancer, RNA Biol., 14, 514, 10.1080/15476286.2015.1122162

Du, 2016, Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2, Nucleic Acids Res., 44, 2846, 10.1093/nar/gkw027

Pamudurti, 2017, Translation of CircRNAs, Mol. Cell., 66, 9, 10.1016/j.molcel.2017.02.021

Hsu, P.Y., and Benfey, P.N. (2018). Small but Mighty: Functional Peptides Encoded by Small ORFs in Plants. Proteomics, 18.

Yang, L., Fu, J., and Zhou, Y. (2018). Circular RNAs and Their Emerging Roles in Immune Regulation. Front. Immunol., 9.

Sun, 2019, CircCode: A Powerful Tool for Identifying circRNA Coding Ability, Front. Genet., 10, 981, 10.3389/fgene.2019.00981

Wilusz, J.E. (2018). A 360° view of circular RNAs: From biogenesis to functions. Wiley Interdiscip. Rev. RNA, 9.

Zhang, 2020, Accurate quantification of circular RNAs identifies extensive circular isoform switching events, Nat. Commun., 11, 90, 10.1038/s41467-019-13840-9

Chen, L., Wang, F., Bruggeman, E.C., Li, C., and Yao, B. (2019). circMeta: A unified computational framework for genomic feature annotation and differential expression analysis of circular RNAs. Bioinformatics.

Gao, 2018, Computational Strategies for Exploring Circular RNAs, Trends Genet., 34, 389, 10.1016/j.tig.2017.12.016

Guay, 2013, Circulating microRNAs as novel biomarkers for diabetes mellitus, Nat. Rev. Endocrinol., 9, 513, 10.1038/nrendo.2013.86

Sathishkumar, 2018, Linking a role of lncRNAs (long non-coding RNAs) with insulin resistance, accelerated senescence, and inflammation in patients with type 2 diabetes, Hum. Genomics, 12, 41, 10.1186/s40246-018-0173-3

Carter, 2015, Circulating long noncoding RNA GAS5 levels are correlated to prevalence of type 2 diabetes mellitus, BBA Clin., 4, 102, 10.1016/j.bbacli.2015.09.001

Li, 2017, The Diagnostic Value of Whole Blood lncRNA ENST00000550337.1 for Pre-Diabetes and Type 2 Diabetes Mellitus, Exp. Clin. Endocrinol Diabetes, 125, 377, 10.1055/s-0043-100018

Lynn, 2007, MicroRNA expression is required for pancreatic islet cell genesis in the mouse, Diabetes, 56, 2938, 10.2337/db07-0175

Mandelbaum, A.D., Melkman-Zehavi, T., Oren, R., Kredo-Russo, S., Nir, T., Dor, Y., and Hornstein, E. (2012). Dysregulation of Dicer1 in beta cells impairs islet architecture and glucose metabolism. Exp. Diabetes Res., 2012.

Zaiou, 2019, Circular RNAs as Potential Biomarkers and Therapeutic Targets for Metabolic Diseases, Adv. Exp. Med. Biol., 1134, 177, 10.1007/978-3-030-12668-1_10

Zaiou, 2019, Circular RNAs in hypertension: Challenges and clinical promise, Hypertens. Res., 42, 1653, 10.1038/s41440-019-0294-7

Shang, 2018, Alterations of circular RNAs in hyperglycemic human endothelial cells, Biochem. Biophys. Res. Commun., 499, 551, 10.1016/j.bbrc.2018.03.187

Pan, 2018, Human circular RNA-0054633 regulates high glucose-induced vascular endothelial cell dysfunction through the microRNA-218/roundabout 1 and microRNA-218/heme oxygenase-1 axes, Int. J. Mol. Med., 42, 597

Zhao, 2017, Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus, Acta Diabetol., 54, 237, 10.1007/s00592-016-0943-0

Wang, 2017, High glucose promotes vascular smooth muscle cell proliferation by upregulating proto-oncogene serine/threonine-protein kinase Pim-1 expression, Oncotarget, 8, 88320, 10.18632/oncotarget.19368

Chen, 2017, Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124, Biochem. Biophys. Res. Commun., 494, 126, 10.1016/j.bbrc.2017.10.068

Florez, 2008, Newly identified loci highlight beta-cell dysfunction as a key cause of type 2 diabetes: Where are the insulin resistance genes?, Diabetologia, 51, 1100, 10.1007/s00125-008-1025-9

Maiese, 2016, Disease onset and aging in the world of circular RNAs, J. Transl. Sci., 2, 327, 10.15761/JTS.1000158

Xu, H., Guo, S., Li, W., and Yu, P. (2015). The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci. Rep., 5.

Latreille, 2014, MicroRNA-7a regulates pancreatic β cell function, J. Clin. Invest., 124, 2722, 10.1172/JCI73066

Stoll, 2018, Circular RNAs as novel regulators of β-cell functions in normal and disease conditions, Mol. Metab., 9, 69, 10.1016/j.molmet.2018.01.010

Cao, 2018, High glucose-induced circHIPK3 downregulation mediates endothelial cell injury, Biochem. Biophys. Res. Commun., 507, 362, 10.1016/j.bbrc.2018.11.041

Klein, 2007, Overview of epidemiologic studies of diabetic retinopathy, Ophthalmic Epidemiol., 14, 179, 10.1080/09286580701396720

Yau, 2012, Global prevalence and major risk factors of diabetic retinopathy, Diabetes Care, 35, 556, 10.2337/dc11-1909

Kempen, 2004, The prevalence of diabetic retinopathy among adults in the United States, Arch. Ophthalmol., 122, 552, 10.1001/archopht.122.4.552

Lupo, 2013, Role of phospholipases A2 in diabetic retinopathy: In vitro and in vivo studies, Biochem. Pharmacol., 86, 1603, 10.1016/j.bcp.2013.09.008

Gu, 2017, Altered Expression Profile of Circular RNAs in the Serum of Patients with Diabetic Retinopathy Revealed by Microarray, Ophthalmic Res., 58, 176, 10.1159/000479156

Zhang, 2017, Identification and Characterization of Circular RNAs as a New Class of Putative Biomarkers in Diabetes Retinopathy, Invest. Ophthalmol. Vis. Sci, 58, 6500, 10.1167/iovs.17-22698

Shan, 2017, Circular Noncoding RNA HIPK3 Mediates Retinal Vascular Dysfunction in Diabetes Mellitus, Circulation, 136, 1629, 10.1161/CIRCULATIONAHA.117.029004

Liu, 2017, Silencing of Circular RNA-ZNF609 Ameliorates Vascular Endothelial Dysfunction, Theranostics, 7, 2863, 10.7150/thno.19353

Liu, 2019, Targeting pericyte-endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction, Proc. Natl. Acad. Sci. U.S.A., 116, 7455, 10.1073/pnas.1814874116

Barutta, F., Bellini, S., Mastrocola, R., Bruno, G., and Gruden, G. (2018). MicroRNA and Microvascular Complications of Diabetes. Int. J. Endocrinol., 2018.

Kato, 2018, Noncoding RNAs as therapeutic targets in early stage diabetic kidney disease, Kidney Res. Clin. Pract., 37, 197, 10.23876/j.krcp.2018.37.3.197

Yang, F., Cui, Z., Deng, H., Wang, Y., Chen, Y., Li, H., and Yuan, L. (2019). Identification of miRNAs-genes regulatory network in diabetic nephropathy based on bioinformatics analysis. Medicine, 98.

Hu, 2019, Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-β1, J. Cell Physiol., 234, 1469, 10.1002/jcp.26959

Liu, 2020, Circ_0080425 inhibits cell proliferation and fibrosis in diabetic nephropathy via sponging miR-24-3p and targeting fibroblast growth factor 11, J. Cell. Physiol., 235, 4520, 10.1002/jcp.29329

Juutinen, 2006, Gestational diabetes identifies women at risk for permanent type 1 and type 2 diabetes in fertile age: Predictive role of autoantibodies, Diabetes Care, 29, 607, 10.2337/diacare.29.03.06.dc05-1118

Cao, 2017, Plasma microRNA-16-5p, -17-5p and -20a-5p: Novel diagnostic biomarkers for gestational diabetes mellitus, J. Obstet. Gynaecol. Res., 43, 974, 10.1111/jog.13317

Guarino, E., Delli Poggi, C., Grieco, G.E., Cenci, V., Ceccarelli, E., Crisci, I., Sebastiani, G., and Dotta, F. (2018). Circulating MicroRNAs as Biomarkers of Gestational Diabetes Mellitus: Updates and Perspectives. Int. J. Endocrinol., 2018.

Yan, 2018, Circular RNA expression profiles in placental villi from women with gestational diabetes mellitus, Biochem. Biophys. Res. Commun., 498, 743, 10.1016/j.bbrc.2018.03.051

Zhu, 2015, Profiling maternal plasma microRNA expression in early pregnancy to predict gestational diabetes mellitus, Int. J. Gynaecol. Obstet., 130, 49, 10.1016/j.ijgo.2015.01.010

Wu, 2019, Hsa_circRNA_0054633 is highly expressed in gestational diabetes mellitus and closely related to glycosylation index, Clin. Epigenetics, 11, 22, 10.1186/s13148-019-0610-8

Wang, 2019, Expression profile of circular RNAs in placentas of women with gestational diabetes mellitus, Endocr. J., 66, 431, 10.1507/endocrj.EJ18-0291

Tong, 2006, Hematocrit, independent of chronic kidney disease, predicts adverse cardiovascular outcomes in Chinese patients with type 2 diabetes, Diabetes Care, 29, 2439, 10.2337/dc06-0887

Yang, 2020, New Perspective in Diabetic Neuropathy: From the Periphery to the Brain, a Call for Early Detection, and Precision Medicine, Front Endocrinol (Lausanne), 10, 929, 10.3389/fendo.2019.00929

Simeoli, R., and Fierabracci, A. (2019). Insights into the Role of MicroRNAs in the Onset and Development of Diabetic Neuropathy. Int. J. Mol. Sci., 20.

Guo, 2019, Microarray analyses of lncRNAs and mRNAs expression profiling associated with diabetic peripheral neuropathy in rats, J. Cell. Biochem., 120, 15347, 10.1002/jcb.28802

Wang, 2018, Intrathecal circHIPK3 shRNA alleviates neuropathic pain in diabetic rats, Biochem. Biophys. Res. Commun., 505, 644, 10.1016/j.bbrc.2018.09.158

Zhou, 2017, Identification of the Spinal Expression Profile of Non-coding RNAs Involved in Neuropathic Pain Following Spared Nerve Injury by Sequence Analysis, Front. Mol. Neurosci., 10, 91, 10.3389/fnmol.2017.00091

Liu, Y., Chen, X., Yao, J., and Kang, J. (2019). Circular RNA ACR relieves high glucose-aroused RSC96 cell apoptosis and autophagy via declining microRNA-145-3p. J. Cell. Biochem.

Jia, 2018, Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity, Circ. Res., 122, 624, 10.1161/CIRCRESAHA.117.311586

Diamant, 2005, Diabetic cardiomyopathy in uncomplicated type 2 diabetes is associated with the metabolic syndrome and systemic inflammation, Diabetologia, 48, 1669, 10.1007/s00125-005-1821-4

Bugger, 2014, Molecular mechanisms of diabetic cardiomyopathy, Diabetologia, 57, 660, 10.1007/s00125-014-3171-6

Yang, X., Li, X., Lin, Q., and Xu, Q. (2019). Up-regulation of microRNA-203 inhibits myocardial fibrosis and oxidative stress in mice with diabetic cardiomyopathy through the inhibition of PI3K/Akt signaling pathway via PIK3CA. Gene, 715.

Ma, C., Luo, H., Liu, B., Li, F., Tschöpe, C., and Fa, X. (2018). Long noncoding RNAs: A new player in the prevention and treatment of diabetic cardiomyopathy?. Diabetes Metab. Res. Rev., 34.

Zhang, 2016, Involvement of long noncoding RNA MALAT1 in the pathogenesis of diabetic cardiomyopathy, Int. J. Cardiol., 202, 753, 10.1016/j.ijcard.2015.10.019

Zhou, X., Zhang, W., Jin, M., Chen, J., Xu, W., and Kong, X. (2017). lncRNA MIAT functions as a competing endogenous RNA to upregulate DAPK2 by sponging miR-22-3p in diabetic cardiomyopathy. Cell Death Dis., 8.

Tang, C.M., Zhang, M., Huang, L., Hu, Z.Q., Zhu, J.N., Xiao, Z., Zhang, Z., Lin, Q.X., Zheng, X.L., and Yang, M. (2017). CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci. Rep., 7.

Zhou, 2017, A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1, Biochem. Biophys. Res. Commun., 487, 769, 10.1016/j.bbrc.2017.04.044

Yang, 2019, A Novel Circular RNA Mediates Pyroptosis of Diabetic Cardiomyopathy by Functioning as a Competing Endogenous RNA, Mol. Ther. Nucleic Acids, 17, 636, 10.1016/j.omtn.2019.06.026

Einarson, 2018, Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007-2017, Cardiovasc. Diabetol., 17, 83, 10.1186/s12933-018-0728-6

Grundy, 2012, Pre-diabetes, metabolic syndrome, and cardiovascular risk, J. Am. Coll. Cardiol., 59, 7, 10.1016/j.jacc.2011.08.080

Kumarswamy, 2014, Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure, Circ. Res., 114, 1569, 10.1161/CIRCRESAHA.114.303915

Kong, Y., Hsieh, C.H., and Alonso, L.C. (2018). ANRIL: A lncRNA at the CDKN2A/B Locus With Roles in Cancer and Metabolic Disease. Front. Endocrinol., 9.

Fan, X., Weng, X., Zhao, Y., Chen, W., Gan, T., and Xu, D. (2017). Circular RNAs in Cardiovascular Disease: An Overview. Biomed. Res. Int., 2017.

Fang, 2018, circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus, Int. J. Mol. Med., 42, 1865

Geng, H.H., Li, R., Su, Y.M., Xiao, J., Pan, M., Cai, X.X., and Ji, X.P. (2016). The Circular RNA Cdr1as Promotes Myocardial Infarction by Mediating the Regulation of miR-7a on Its Target Genes Expression. PLoS One, 11.

Zhang, Y., Sun, L., Xuan, L., Pan, Z., Li, K., Liu, S., Huang, Y., Zhao, X., Huang, L., and Wang, Z. (2016). Reciprocal Changes of Circulating Long Non-Coding RNAs ZFAS1 and CDR1AS Predict Acute Myocardial Infarction. Sci. Rep., 6.

Li, 2017, Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus, Diab. Vasc. Dis. Res., 14, 510, 10.1177/1479164117722714

Chang, W., and Wang, J. (2019). Exosomes and Their Noncoding RNA Cargo Are Emerging as New Modulators for Diabetes Mellitus. Cells, 8.

Wang, Y., Cheng, N., and Luo, J. (2017). Downregulation of lncRNA ANRIL represses tumorigenicity and enhances cisplatin-induced cytotoxicity via regulating microRNA let-7a in nasopharyngeal carcinoma. J. Biochem. Mol. Toxicol., 31.

Reddy, 2015, Epigenetic mechanisms in diabetic complications and metabolic memory, Diabetologia, 58, 443, 10.1007/s00125-014-3462-y

Kato, 2019, Epigenetics and epigenomics in diabetic kidney disease and metabolic memory, Nat. Rev. Nephrol., 15, 327, 10.1038/s41581-019-0135-6

Wegner, 2014, Role of epigenetic mechanisms in the development of chronic complications of diabetes, Diabetes Res. Clin. Pract., 105, 164, 10.1016/j.diabres.2014.03.019

Zhong, 2015, The MicroRNAs in the Pathogenesis of Metabolic Memory, Endocrinology, 156, 3157, 10.1210/en.2015-1063

Papavasileiou, 2014, circBase: A database for circular RNAs, RNA, 20, 1666, 10.1261/rna.043687.113

Ghosal, 2013, Circ2Traits: A comprehensive database for circular RNA potentially associated with disease and traits, Front. Genet., 4, 283, 10.3389/fgene.2013.00283

Fan, C., Lei, X., Fang, Z., Jiang, Q., and Wu, F.X. (2018). CircR2Disease: A manually curated database for experimentally supported circular RNAs associated with various diseases. Database (Oxford), 2018.

Dudekula, 2016, CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs, RNA Biol., 13, 34, 10.1080/15476286.2015.1128065

Xia, 2018, CSCD: A database for cancer-specific circular RNAs, Nucleic Acids Res., 46, D925, 10.1093/nar/gkx863

Xia, 2017, Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes, Brief. Bioinform., 18, 984

Liu, 2019, Circbank: A comprehensive database for circRNA with standard nomenclature, RNA Biol., 16, 899, 10.1080/15476286.2019.1600395

Chen, X., Han, P., Zhou, T., Guo, X., Song, X., and Li, Y. (2016). circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations. Sci. Rep., 6.

Liu, 2016, CircNet: A database of circular RNAs derived from transcriptome sequencing data, Nucleic Acids Res., 44, D209, 10.1093/nar/gkv940

Li, 2014, starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data, Nucleic Acids Res., 42, D92, 10.1093/nar/gkt1248

Wu, 2018, circlncRNAnet: An integrated web-based resource for mapping functional networks of long or circular forms of noncoding RNAs, Gigascience, 7, 1

Li, 2018, exoRBase: A database of circRNA, lncRNA and mRNA in human blood exosomes, Nucleic Acids Res., 46, D106, 10.1093/nar/gkx891

Tang, 2019, TRCirc: A resource for transcriptional regulation information of circRNAs, Brief. Bioinform., 20, 2327, 10.1093/bib/bby083

Meng, X., Hu, D., Zhang, P., Chen, Q., and Chen, M. (2019). CircFunBase: A database for functional circular RNAs. Database (Oxford), 2019.

Dong, 2018, CIRCpedia v2: An Updated Database for Comprehensive Circular RNA Annotation and Expression Comparison, Genomics Proteomics Bioinformatics, 16, 226, 10.1016/j.gpb.2018.08.001