Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tác động độc hại của hạt nano Zirconia trong các tế bào giống như nguyên bào xương 3T3-E1
Tóm tắt
Zirconia (ZrO2) là một trong những oxit kim loại được sử dụng rộng rãi cho các ứng dụng sinh học tiềm năng như cảm biến sinh học, liệu pháp ung thư, cấy ghép, và nha khoa nhờ vào độ bền cơ học cao và độ độc thấp. Do sự ứng dụng rộng rãi này, khả năng tiếp xúc với các hạt nano (NPs) đã tăng lên, điều này đã thu hút sự chú ý đáng kể. Do đó, việc nghiên cứu hồ sơ độc tính của hạt nano ZrO2 là rất cấp bách. Titanium dioxide (TiO2) là một vật liệu nano khác được sử dụng rộng rãi, được biết đến với độc tính yếu. Trong nghiên cứu này, các hạt nano TiO2 được sử dụng làm kiểm soát để đánh giá tính tương hợp sinh học của hạt nano ZrO2. Chúng tôi phát hiện độc tính tế bào của các hạt nano TiO2 và ZrO2 trên các tế bào 3T3-E1 như nguyên bào xương và nhận thấy các loài oxy phản ứng (ROS) đóng vai trò quan trọng trong độc tính do hạt nano TiO2 và ZrO2 gây ra theo phương thức phụ thuộc vào nồng độ. Chúng tôi cũng cho thấy rằng các hạt nano TiO2 và ZrO2 có thể gây ra hiện tượng apoptosis và thay đổi hình thái sau khi nuôi cấy với tế bào 3T3-E1 ở nồng độ cao. Hơn nữa, các hạt nano TiO2 và ZrO2 ở nồng độ cao có thể ức chế sự khác biệt tạo xương của tế bào, so với các hạt nano ở nồng độ thấp. Kết luận, các hạt nano TiO2 và ZrO2 có thể gây ra phản ứng độc tế bào in vitro theo phương thức phụ thuộc vào nồng độ, điều này cũng có thể ảnh hưởng đến quá trình tạo xương; các hạt nano ZrO2 cho thấy tác động độc hại mạnh hơn so với hạt nano TiO2.
Từ khóa
#Zirconia #hạt nano #độc tính #tế bào nguyên bào xương #oxy phản ứng #apoptosisTài liệu tham khảo
Lohbauer U, Wagner A, Belli R, Stoetzel C, Hilpert A, Kurland HD, Grabow J, Müller FA (2010) Zirconia nanoparticles prepared by laser vaporization as fillers for dental adhesives. Acta Biomater 6(12):4539–4546
Ahn ES, Gleason NJ, Ying JY (2010) The effect of zirconia reinforcing agents on the microstructure and mechanical properties of hydroxyapatite-based nanocomposites. J Am Ceram Soc 88(12):3374–3379
Karunakaran G, Suriyaprabha R, Manivasakan P, Yuvakkumar R, Rajendran V, Kannan N (2013) Screening of in vitro cytotoxicity, antioxidant potential and bioactivity of nano- and micro-ZrO2 and -TiO2 particles. Ecotoxicol Environ Saf 93:191–197
Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40(14):4374–4381
Landsiedel R, Ma-Hock L, Hofmann T, Wiemann M, Strauss V, Treumann S, Wohlleben W, Groters S, Wiench K, van Ravenzwaay B (2014) Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials. Part Fibre Toxicol 11:16
Otero-González L, García-Saucedo C, Field JA, Sierra-Álvarez R (2013) Toxicity of TiO 2, ZrO2, Fe0, Fe2O3, and Mn2O3 nanoparticles to the yeast, Saccharomyces cerevisiae. Chemosphere 93(6):1201–1206
Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, Boczkowski J, Lacroix G, Hoet P (2009) Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6:14
Soto K, Garza KM, Murr LE (2007) Cytotoxic effects of aggregated nanomaterials. Acta Biomater 3(3):351
Demir E, Burgucu D, Turna F, Aksakal S, Kaya B (2013) Determination of TiO2, ZrO2, and Al2O3 nanoparticles on genotoxic responses in human peripheral blood lymphocytes and cultured embyronic kidney cells. J Toxicol Environ Health A 76(16):990–1002
Dalal A, Pawar V, McAllister K, Weaver C, Hallab NJ (2012) Orthopedic implant cobalt-alloy particles produce greater toxicity and inflammatory cytokines than titanium alloy and zirconium alloy-based particles in vitro, in human osteoblasts, fibroblasts, and macrophages. J Biomed Mater Res A 100(8):2147–2158
Stoccoro A, Di Bucchianico S, Uboldi C, Coppede F, Ponti J, Placidi C, Blosi M, Ortelli S, Costa AL, Migliore L (2016) A panel of in vitro tests to evaluate genotoxic and morphological neoplastic transformation potential on Balb/3T3 cells by pristine and remediated titania and zirconia nanoparticles. Mutagenesis 31(5):511–529
Kozelskaya AI, Panin AV, Khlusov IA, Mokrushnikov PV, Zaitsev BN, Kuzmenko DI, Vasyukov GY (2016) Morphological changes of the red blood cells treated with metal oxide nanoparticles. Toxicol in Vitro 37:34–40
Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15
Liu Y, Zheng Z, Zara JN, Hsu C, Soofer DE, Lee KS, Siu RK, Miller LS, Zhang X, Carpenter D, Wang C, Ting K, Soo C (2012) The antimicrobial and osteoinductive properties of silver nanoparticle/poly (DL-lactic-co-glycolic acid)-coated stainless steel. Biomaterials 33(34):8745–8756
Ha SW, Weitzmann MN, Beck GR Jr (2014) Bioactive silica nanoparticles promote osteoblast differentiation through stimulation of autophagy and direct association with LC3 and p62. ACS Nano 8(6):5898–5910
Weitzmann MN, Ha SW, Vikulina T, Roser-Page S, Lee JK, Beck GR Jr (2015) Bioactive silica nanoparticles reverse age-associated bone loss in mice. Nanomedicine 11(4):959–967
Beck GR Jr, Ha SW, Camalier CE, Yamaguchi M, Li Y, Lee JK, Weitzmann MN (2012) Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomedicine 8(6):793–803
Shimizu M, Kobayashi Y, Mizoguchi T, Nakamura H, Kawahara I, Narita N, Usui Y, Aoki K, Hara K, Haniu H, Ogihara N, Ishigaki N, Nakamura K, Kato H, Kawakubo M, Dohi Y, Taruta S, Kim YA, Endo M, Ozawa H, Udagawa N, Takahashi N, Saito N (2012) Carbon nanotubes induce bone calcification by bidirectional interaction with osteoblasts. Adv Mater 24(16):2176–2185
Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400(1–3):396–414
Bartel LK, Hunter DA, Anderson KB, Yau W, Wu J, Gato WE (2018) Short-term evaluation of hepatic toxicity of titanium dioxide nanofiber (TDNF). Drug Chem Toxicol 1–8. https://doi.org/10.1080/01480545.2018.1459671
Vila L, García-Rodríguez A, Marcos R, Hernández A (2018) Titanium dioxide nanoparticles translocate through differentiated Caco-2 cell monolayers, without disrupting the barrier functionality or inducing genotoxic damage. J Appl Toxicol 38(9):1195–1205
Feltis BN, Okeefe SJ, Harford AJ, Piva TJ, Turney TW, Wright PF (2012) Independent cytotoxic and inflammatory responses to zinc oxide nanoparticles in human monocytes and macrophages. Nanotoxicology 6(7):757–765
Hanley C, Thurber A, Hanna C, Punnoose A, Zhang J, Wingett DG (2009) The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Res Lett 4(12):1409–1420
Bhattacharya D, Santra CR, Ghosh AN, Karmakar P (2014) Differential toxicity of rod and spherical zinc oxide nanoparticles on human peripheral blood mononuclear cells. J Biomed Nanotechnol 10(4):707–716
Donaldson K, Murphy FA, Duffin R, Poland CA (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5
Zaveri TD, Dolgova NV, Chu BH, Lee J, Wong J, Lele TP, Ren F, Keselowsky BG (2010) Contributions of surface topography and cytotoxicity to the macrophage response to zinc oxide nanorods. Biomaterials 31(11):2999–3007
Cho WS, Duffin R, Bradley M, Megson IL, MacNee W, Lee JK, Jeong J, Donaldson K (2013) Predictive value of in vitro assays depends on the mechanism of toxicity of metal oxide nanoparticles. Part Fibre Toxicol 10(1):55
Watson C, Ge J, Cohen J, Pyrgiotakis G, Engelward BP, Demokritou P (2014) High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology. ACS Nano 8(3):2118–2133
Palomaki J, Karisola P, Pylkkanen L, Savolainen K, Alenius H (2010) Engineered nanomaterials cause cytotoxicity and activation on mouse antigen presenting cells. Toxicology 267(1–3):125–131
Yu KN, Yoon TJ, Minai-Tehrani A, Kim JE, Park SJ, Jeong MS, Ha SW, Lee JK, Kim JS, Cho MH (2013) Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation. Toxicol in Vitro 27(4):1187–1195
Kapur A, Felder M, Fass L, Kaur J, Czarnecki A, Rathi K, Zeng S, Osowski KK, Howell C, Xiong MP, Whelan RJ, Patankar MS (2016) Modulation of oxidative stress and subsequent induction of apoptosis and endoplasmic reticulum stress allows citral to decrease cancer cell proliferation. Sci Rep 6:27530
Ma DD, Yang WX (2016) Engineered nanoparticles induce cell apoptosis: potential for cancer therapy. Oncotarget 7(26):40882–40903
Cai K, Hou Y, Hu Y, Zhao L, Luo Z, Shi Y, Lai M, Yang W, Liu P (2011) Correlation of the cytotoxicity of TiO2 nanoparticles with different particle sizes on a sub-200-nm scale. Small 7(21):3026–3031
Kim S, Ryu DY (2013) Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 33(2):78–89
Asweto CO, Wu J, Alzain MA, Hu H, Andrea S, Feng L, Yang X, Duan J, Sun Z (2017) Cellular pathways involved in silica nanoparticles induced apoptosis: a systematic review of in vitro studies. Environ Toxicol Pharmacol 56:191–197
Roy R, Singh SK, Chauhan LK, Das M, Tripathi A, Dwivedi PD (2014) Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3K/Akt/mTOR inhibition. Toxicol Lett 227(1):29–40
Xu F, Piett C, Farkas S, Qazzaz M, Syed NI (2013) Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons. Mol Brain 6:29
Soenen SJ, Manshian B, Montenegro JM, Amin F, Meermann B, Thiron T, Cornelissen M, Vanhaecke F, Doak S, Parak WJ, De Smedt S, Braeckmans K (2012) Cytotoxic effects of gold nanoparticles: a multiparametric study. ACS Nano 6(7):5767–5783
Wu J, Wang C, Sun J, Xue Y (2011) Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS Nano 5(6):4476–4489
Sengstock C, Diendorf J, Epple M, Schildhauer TA, Koller M (2014) Effect of silver nanoparticles on human mesenchymal stem cell differentiation. Beilstein J Nanotechnol 5:2058–2069
Park JK, Kim YJ, Yeom J, Jeon JH, Yi GC, Je JH, Hahn SK (2010) The topographic effect of zinc oxide nanoflowers on osteoblast growth and osseointegration. Adv Mater 22(43):4857–4861
