Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Zhangfei kích thích sự biểu hiện của thụ thể yếu tố tăng trưởng thần kinh, trkA, trong các tế bào u nguyên bào thần kinh và gây ra sự phân hóa hoặc apoptosis ở chúng
Tóm tắt
Sự tương tác giữa yếu tố tăng trưởng thần kinh (NGF) và thụ thể của nó—thụ thể kinase A liên quan đến tropomyosin (trkA)—điều chỉnh nhiều chức năng thần kinh, bao gồm sự phát triển đúng đắn của các tế bào cảm giác trong quá trình phát triển phôi, sự sống sót của các tế bào cảm giác và sự phân hóa cũng như apoptosis của các khối u thần kinh. Zhangfei là một yếu tố phiên mã được biểu hiện trong các tế bào thần kinh đã phân hóa. Vì chúng tôi có thể phát hiện Zhangfei trong các tế bào thần kinh trưởng thành nhưng không thấy trong các tế bào khối u thần kinh, chúng tôi đã giả thuyết rằng sự biểu hiện ngoại lai của protein này trong các tế bào medulloblastoma có thể sẽ kích thích sự phân hóa của các tế bào đó. Chúng tôi cho thấy rằng trong các tế bào medulloblastoma ONS-76, resveratrol, một chất kích thích apoptosis và phân hóa, đã làm tăng biểu hiện của Zhangfei, trkA và Gen Phản ứng Tăng trưởng sớm 1 (Egr1), một gen thường được kích hoạt bởi tín hiệu NGF–trkA. Các tế bào ONS-76 ngừng phát triển ngay sau khi điều trị bằng resveratrol. Trong khi việc kích thích Zhangfei trong các tế bào điều trị bằng resveratrol là nhẹ nhưng nhất quán, việc nhiễm các tế bào medulloblastoma đang phát triển tích cực bằng một vector adenovirus mang Zhangfei đã bắt chước một số hiệu ứng của resveratrol. Zhangfei được biểu hiện ngoại lai trong các tế bào ONS-76 đã dẫn đến sự gia tăng biểu hiện của trkA và Egr1, phosphoryl hóa kinase điều hòa tín hiệu ngoại bào (Erk1), và gây ra các tế bào ONS-76 xuất hiện các dấu hiệu của sự apoptosis. UW228, một dòng tế bào medulloblastoma khác, cũng nhạy cảm với các tác động ức chế của resveratrol và Zhangfei. Ngược lại, trong khi resveratrol ức chế sự phát triển của các tế bào sợi diploid người (MRC5), Zhangfei có tác động tương đối nhỏ tới các tế bào này.
Từ khóa
#yếu tố tăng trưởng thần kinh #trkA #Zhangfei #u nguyên bào thần kinh #apoptosis #phân hóaTài liệu tham khảo
Parada LF, Tsoulfas P, Tessarollo L, Blair J, Reid SW, Soppet D (1992) The Trk family of tyrosine kinases: receptors for NGF-related neurotrophins. Cold Spring Harb Symp Quant Biol 57:43–51
Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642. doi:10.1146/annurev.biochem.72.121801.161629
Crowley C, Spencer SD, Nishimura MC, Chen KS, Pitts-Meek S, Armanini MP et al (1994) Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76:1001–1011. doi:10.1016/0092-8674(94)90378-6
Martin-Zanca D, Barbacid M, Parada LF (1990) Expression of the trk proto-oncogene is restricted to the sensory cranial and spinal ganglia of neural crest origin in mouse development. Genes Dev 4:683–694. doi:10.1101/gad.4.5.683
Bibel M, Barde YA (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14:2919–2937. doi:10.1101/gad.841400
Verge VM, Merlio JP, Grondin J, Ernfors P, Persson H, Riopelle RJ et al (1992) Colocalization of NGF binding sites, trk mRNA, and low-affinity NGF receptor mRNA in primary sensory neurons: responses to injury and infusion of NGF. J Neurosci 12:4011–4022
Verge VM, Richardson PM, Wiesenfeld-Hallin Z, Hokfelt T (1995) Differential influence of nerve growth factor on neuropeptide expression in vivo: a novel role in peptide suppression in adult sensory neurons. J Neurosci 15:2081–2096
Sasaki K, Chancellor MB, Goins WF, Phelan MW, Glorioso JC, de Groat WC et al (2004) Gene therapy using replication-defective herpes simplex virus vectors expressing nerve growth factor in a rat model of diabetic cystopathy. Diabetes 53:2723–2730. doi:10.2337/diabetes.53.10.2723
Walwyn WM, Matsuka Y, Arai D, Bloom DC, Lam H, Tran C et al (2006) HSV-1-mediated NGF delivery delays nociceptive deficits in a genetic model of diabetic neuropathy. Exp Neurol 198:260–270. doi:10.1016/j.expneurol.2005.12.006
Kriesel JD (1999) Reactivation of herpes simplex virus: the role of cytokines and intracellular factors. Curr Opin Infect Dis 12:235–238
Hill JM, Garza HHJ, Helmy MF, Cook SD, Osborne PA, Johnson EMJ et al (1997) Nerve growth factor antibody stimulates reactivation of ocular herpes simplex virus type 1 in latently infected rabbits. J Neurovirol 3:206–211
Laycock KA, Brady RH, Lee SF, Osborne PA, Johnson EM, Pepose JS (1994) The role of nerve growth factor in modulating herpes simplex virus reactivation in vivo. Graefes Arch Clin Exp Ophthalmol 232:421–425. doi:10.1007/BF00186584
Wilcox CL, Smith RL, Freed CR, Johnson EMJ (1990) Nerve growth factor-dependence of herpes simplex virus latency in peripheral sympathetic and sensory neurons in vitro. J Neurosci 10:1268–1275
Antonelli A, Lenzi L, Nakagawara A, Osaki T, Chiaretti A, Aloe L (2007) Tumor suppressor proteins are differentially affected in human ependymoblastoma and medulloblastoma cells exposed to nerve growth factor. Cancer Invest 25:94–101. doi:10.1080/07357900701205689
Eberhart CG, Kaufman WE, Tihan T, Burger PC (2001) Apoptosis, neuronal maturation, and neurotrophin expression within medulloblastoma nodules. J Neuropathol Exp Neurol 60:462–469
Ohta T, Watanabe T, Katayama Y, Kurihara J, Yoshino A, Nishimoto H et al (2006) TrkA expression is associated with an elevated level of apoptosis in classic medulloblastomas. Neuropathology 26:170–177. doi:10.1111/j.1440-1789.2006.00678.x
Tajima Y, Molina RP Jr, Rorke LB, Kaplan DR, Radeke M, Feinstein SC et al (1998) Neurotrophins and neuronal versus glial differentiation in medulloblastomas and other pediatric brain tumors. Acta Neuropathol 95:325–332. doi:10.1007/s004010050806
Chou TT, Trojanowski JQ, Lee VM (2000) A novel apoptotic pathway induced by nerve growth factor-mediated TrkA activation in medulloblastoma. J Biol Chem 275:565–570. doi:10.1074/jbc.275.1.565
Eggert A, Ikegaki N, Liu X, Chou TT, Lee VM, Trojanowski JQ et al (2000) Molecular dissection of TrkA signal transduction pathways mediating differentiation in human neuroblastoma cells. Oncogene 19:2043–2051. doi:10.1038/sj.onc.1203518
Muragaki Y, Chou TT, Kaplan DR, Trojanowski JQ, Lee VM (1997) Nerve growth factor induces apoptosis in human medulloblastoma cell lines that express TrkA receptors. J Neurosci 17:530–542
Efstathiou S, Preston CM (2005) Towards an understanding of the molecular basis of herpes simplex virus latency. Virus Res 111:108–119. doi:10.1016/j.virusres.2005.04.017
Roizman B, Knipe DM (2001) Herpes simplex viruses and their replication. In: Knipe DM, Howley PM, Griffin DE, Martin MA, Lamb RA, Roizman B, Straus SE (eds) Fields virology. Lippincott Willaims and Wilkins, Philadelphia, PA, pp 2399–2460
Wilcox C, Johnson E (1987) Nerve growth factor deprivation results in the reactivation of latent herpes simplex virus in vitro. J Virol 61:2311–2315
Wilcox C, Johnson E (1988) Characterization of nerve growth factor-dependent herpes simplex virus latency in neurons in vitro. J Virol 62:393–399
Wysocka J, Herr W (2003) The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends Biochem Sci 28:294–304. doi:10.1016/S0968-0004(03)00088-4
Julien E, Herr W (2003) Proteolytic processing is necessary to separate and ensure proper cell growth and cytokinesis functions of HCF-1. EMBO J 22:2360–2369. doi:10.1093/emboj/cdg242
Ajuh P, Chusainow J, Ryder U, Lamond AI (2002) A novel function for human factor C1 (HCF-1), a host protein required for herpes simplex virus infection, in pre-mRNA splicing. EMBO J 21:6590–6602. doi:10.1093/emboj/cdf652
Wysocka J, Myers MP, Laherty CD, Eisenman RN, Herr W (2003) Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. Genes Dev 17:896–911. doi:10.1101/gad.252103
Narayanan A, Nogueira ML, Ruyechan WT, Kristie TM (2005) Combinatorial transcription of herpes simplex virus and varicella zoster virus immediate early genes is strictly determined by the cellular coactivator HCF-1. J Biol Chem 280:1369–1375. doi:10.1074/jbc.M410178200
Hughes TA, La Boissiere S, O’Hare P (1999) Analysis of functional domains of the host cell factor involved in VP16 complex formation. J Biol Chem 274:16437–16443. doi:10.1074/jbc.274.23.16437
Wilson AC, Freiman RN, Goto H, Nishimoto T, Herr W (1997) VP16 targets an amino-terminal domain of HCF involved in cell cycle progression. Mol Cell Biol 17:6139–6146
Narayanan A, Ruyechan WT, Kristie TM (2007) The coactivator host cell factor-1 mediates Set1 and MLL1 H3K4 trimethylation at herpesvirus immediate early promoters for initiation of infection. Proc Natl Acad Sci USA 104:10835–10840. doi:10.1073/pnas.0704351104
Tyagi S, Chabes AL, Wysocka J, Herr W (2007) E2F activation of S phase promoters via association with HCF-1 and the MLL family of histone H3K4 methyltransferases. Mol Cell 27:107–119. doi:10.1016/j.molcel.2007.05.030
Knez J, Piluso D, Bilan P, Capone JP (2006) Host cell factor-1 and E2F4 interact via multiple determinants in each protein. Mol Cell Biochem 288:79–90. doi:10.1007/s11010-006-9122-x
Luciano RL, Wilson AC (2003) HCF-1 functions as a coactivator for the zinc finger protein Krox20. J Biol Chem 278:51116–51124. doi:10.1074/jbc.M303470200
Lu R, Misra V (2000) Potential role for Luman, the cellular homologue of herpes simplex virus VP16 (alpha gene trans-inducing factor), in herpesvirus latency. J Virol 74:934–943. doi:10.1128/JVI.74.2.934-943.2000
Lu R, Yang P, O’Hare P, Misra V (1997) Luman, a new member of the CREB/ATF family, binds to herpes simplex virus VP16-associated host cellular factor. Mol Cell Biol 17:5117–5126
Lu R, Yang P, Padmakumar S, Misra V (1998) The herpesvirus transactivator VP16 mimics a human basic domain leucine zipper protein, Luman, in its interaction with HCF. J Virol 72:6291–6297
Lu R, Misra V (2000) Zhangfei: a second cellular protein interacts with herpes simplex virus accessory factor HCF in a manner similar to Luman and VP16. Nucleic Acids Res 28:2446–2454. doi:10.1093/nar/28.12.2446
Hogan MR, Cockram GP, Lu R (2006) Cooperative interaction of Zhangfei and ATF4 in transactivation of the cyclic AMP response element. FEBS Lett 580:58–62. doi:10.1016/j.febslet.2005.11.046
Misra V, Rapin N, Akhova O, Bainbridge M, Korchinski P (2005) Zhangfei is a potent and specific inhibitor of the host cell factor-binding transcription factor Luman. J Biol Chem 280:15257–15266. doi:10.1074/jbc.M500728200
Akhova O, Bainbridge M, Misra V (2005) The neuronal host cell factor-binding protein Zhangfei inhibits herpes simplex virus replication. J Virol 79:14708–14718. doi:10.1128/JVI.79.23.14708-14718.2005
Newman JR, Keating AE (2003) Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science 300:2097–2101. doi:10.1126/science.1084648
Yamada M, Shimizu K, Tamura K, Okamoto Y, Matsui Y, Moriuchi S et al (1989) Establishment and biological characterization of human medulloblastoma cell lines. No To Shinkei 41:695–702
Keles GE, Berger MS, Srinivasan J, Kolstoe DD, Bobola MS, Silber JR (1995) Establishment and characterization of four human medulloblastoma-derived cell lines. Oncol Res 7:493–503
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389
Chen Y, Tseng SH, Lai HS, Chen WJ (2004) Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice. Surgery 136:57–66. doi:10.1016/j.surg.2004.01.017
Nicolini G, Rigolio R, Scuteri A, Miloso M, Saccomanno D, Cavaletti G et al (2003) Effect of trans-resveratrol on signal transduction pathways involved in paclitaxel-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neurochem Int 42:419–429. doi:10.1016/S0197-0186(02)00132-8
Tredici G, Miloso M, Nicolini G, Galbiati S, Cavaletti G, Bertelli A (1999) Resveratrol, map kinases and neuronal cells: might wine be a neuroprotectant? Drugs Exp Clin Res 25:99–103
Wang Q, Li H, Wang XW, Wu DC, Chen XY, Liu J (2003) Resveratrol promotes differentiation and induces Fas-independent apoptosis of human medulloblastoma cells. Neurosci Lett 351:83–86. doi:10.1016/j.neulet.2003.07.002
Zhang P, Li H, Wu ML, Chen XY, Kong QY, Wang XW et al (2006) c-Myc downregulation: a critical molecular event in resveratrol-induced cell cycle arrest and apoptosis of human medulloblastoma cells. J Neurooncol 80:123–131. doi:10.1007/s11060-006-9172-7
Park KC, Shimizu K, Hayakawa T (1998) Interferon yield and MHC antigen expression of human medulloblastoma cells and its suppression during dibutyryl cyclic AMP-induced differentiation: do medulloblastoma cells derive from bipotent neuronal and glial progenitors? Cell Mol Neurobiol 18:497–507. doi:10.1023/A:1026327309345
Harada T, Morooka T, Ogawa S, Nishida E (2001) ERK induces p35, a neuron-specific activator of Cdk5, through induction of Egr1. Nat Cell Biol 3:453–459. doi:10.1038/35074516
Jacobs JP, Jones CM, Baille JP (1970) Characteristics of a human diploid cell designated MRC-5. Nature 227:168–170. doi:10.1038/227168a0
Wechsler-Reya RJ (2003) Analysis of gene expression in the normal and malignant cerebellum. Recent Prog Horm Res 58:227–248. doi:10.1210/rp.58.1.227
Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22:103–114. doi:10.1016/S0896-6273(00)80682-0
Fogarty MP, Emmenegger BA, Grasfeder LL, Oliver TG, Wechsler-Reya RJ (2007) Fibroblast growth factor blocks Sonic hedgehog signaling in neuronal precursors and tumor cells. Proc Natl Acad Sci USA 104:2973–2978. doi:10.1073/pnas.0605770104
Kokunai T, Sawa H, Tamaki N (1996) Functional analysis of trk proto-oncogene product in medulloblastoma cells. Neurol Med Chir (Tokyo) 36:796–804. doi:10.2176/nmc.36.796
Keles GE, Berger MS, Schofield D, Bothwell M (1993) Nerve growth factor receptor expression in medulloblastomas and the potential role of nerve growth factor as a differentiating agent in medulloblastoma cell lines. Neurosurgery 32:274–280 (discussion 280)
Izumiya Y, Lin SF, Ellison T, Chen LY, Izumiya C, Luciw P et al (2003) Kaposi’s sarcoma-associated herpesvirus K-bZIP is a coregulator of K-Rta: physical association and promoter-dependent transcriptional repression. J Virol 77:1441–1451. doi:10.1128/JVI.77.2.1441-1451.2003
Park J, Seo T, Hwang S, Lee D, Gwack Y, Choe J (2000) The K-bZIP protein from Kaposi’s sarcoma-associated herpesvirus interacts with p53 and represses its transcriptional activity. J Virol 74:11977–11982. doi:10.1128/JVI.74.24.11977-11982.2000
Lefort S, Soucy-Faulkner A, Grandvaux N, Flamand L (2007) Binding of Kaposi’s sarcoma-associated herpesvirus K-bZIP to interferon responsive factor 3 elements modulates antiviral genes expression. J Virol 81:10950–10960. doi:10.1128/JVI.00183-07
Wu FY, Wang SE, Tang QQ, Fujimuro M, Chiou CJ, Zheng Q et al (2003) Cell cycle arrest by Kaposi’s sarcoma-associated herpesvirus replication-associated protein is mediated at both the transcriptional and posttranslational levels by binding to CCAAT/enhancer-binding protein alpha and p21(CIP-1). J Virol 77:8893–8914. doi:10.1128/JVI.77.16.8893-8914.2003
Miloso M, Bertelli AA, Nicolini G, Tredici G (1999) Resveratrol-induced activation of the mitogen-activated protein kinases, ERK1 and ERK2, in human neuroblastoma SH-SY5Y cells. Neurosci Lett 264:141–144. doi:10.1016/S0304-3940(99)00194-9
Serra JM, Gutierrez A, Alemany R, Navarro M, Ros T, Saus C et al (2008) Inhibition of c-Myc down-regulation by sustained ERK activation prevents the antimetabolite methotrexate- and gemcitabine-induced differentiation in non-small cell lung cancer cells. Mol Pharmacol 73:1679–1687. doi:10.1124/mol.107.043372