Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Zbtb20 Điều Hòa Sự Phát Triển Neurogenesis Trong Nhân Xúc Giác Và Gliogenesis Sau Khi Tổn Thương Não Ở Người Trưởng Thành
Tóm tắt
Yếu tố phiên mã (TF) Zbtb20 đóng vai trò quan trọng trong sự chỉ định hippocampal và điều hòa sự hình thành neuron của các neuron chiếu sáng neocortical. Ở đây, chúng tôi chỉ ra sự tham gia quan trọng của TF Zbtb20 trong neurogenesis của cả neuron chiếu sáng và interneuron của bóng khứu giác trong các giai đoạn phôi thai. Dữ liệu của chúng tôi chỉ ra rằng sự thiếu hụt Zbtb20 làm giảm đáng kể sự sinh ra của một tập hợp các neuron Tbr2+ sinh ra sớm trong quá trình phát triển phôi. Hơn nữa, chúng tôi cung cấp bằng chứng rằng Zbtb20 điều hòa sự chuyển tiếp từ neurogenesis sang gliogenesis trong các tế bào gốc radial glial nguyên phát ở giai đoạn sinh nở (E18.5). Trong não của động vật có vú trưởng thành, Zbtb20 được biểu hiện bởi các tế bào gốc thần kinh (NPCs) GFAP+ nằm trong khu vực neurogenic của não trước, tức là vùng subventricular (SVZ) của các ventricles bên. Khi khởi phát cơn thiếu máu não, chúng tôi nhận thấy rằng sự biểu hiện của Zbtb20 gia tăng trong các tế bào tương tự astrosit, trong khi giảm các mức độ biểu hiện của Zbtb20 làm giảm đáng kể phản ứng astrosit do thiếu máu gây ra như quan sát được trong chuột mang gen Zbtb20 thiếu chức năng dị hợp tử. Tổng thể, các kết quả này làm nổi bật vai trò quan trọng của TF Zbtb20 như một yếu tố điều chỉnh tạm thời của neurogenesis hoặc gliogenesis, tùy thuộc vào bối cảnh phát triển.
Từ khóa
#Zbtb20 #yếu tố phiên mã #neurogenesis #gliogenesis #tế bào gốc thần kinh #tổn thương não.Tài liệu tham khảo
Miller FD, Gauthier AS (2007) Timing is everything: making neurons versus glia in the developing cortex. Neuron 54(3):357–369. https://doi.org/10.1016/j.neuron.2007.04.019
Angevine JB Jr, Sidman RL (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192:766–768
Rakic P (1988) Specification of cerebral cortical areas. Science 241(4862):170–176
Takahashi T, Nowakowski RS, Caviness VS Jr (1997) The mathematics of neocortical neuronogenesis. Dev Neurosci 19(1):17–22
Faedo A, Tomassy GS, Ruan Y, Teichmann H, Krauss S, Pleasure SJ, Tsai SY, Tsai MJ et al (2008) COUP-TFI coordinates cortical patterning, neurogenesis, and laminar fate and modulates MAPK/ERK, AKT, and beta-catenin signaling. Cereb Cortex 18(9):2117–2131. https://doi.org/10.1093/cercor/bhm238
Naka H, Nakamura S, Shimazaki T, Okano H (2008) Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development. Nat Neurosci 11(9):1014–1023. https://doi.org/10.1038/nn.2168
Hanashima C, Li SC, Shen L, Lai E, Fishell G (2004) Foxg1 suppresses early cortical cell fate. Science 303(5654):56–59. https://doi.org/10.1126/science.1090674
Wang H, Ge G, Uchida Y, Luu B, Ahn S (2011) Gli3 is required for maintenance and fate specification of cortical progenitors. The Journal of neuroscience : the official journal of the Society for Neuroscience 31(17):6440–6448. https://doi.org/10.1523/JNEUROSCI.4892-10.2011
Dominguez MH, Ayoub AE, Rakic P (2013) POU-III transcription factors (Brn1, Brn2, and Oct6) influence neurogenesis, molecular identity, and migratory destination of upper-layer cells of the cerebral cortex. Cereb Cortex 23(11):2632–2643. https://doi.org/10.1093/cercor/bhs252
Tonchev AB, Tuoc TC, Rosenthal EH, Studer M, Stoykova A (2016) Zbtb20 modulates the sequential generation of neuronal layers in developing cortex. Mol Brain 9(1):65. https://doi.org/10.1186/s13041-016-0242-2
Rowitch DH, Kriegstein AR (2010) Developmental genetics of vertebrate glial-cell specification. Nature 468(7321):214–222. https://doi.org/10.1038/nature09611
Deneen B, Ho R, Lukaszewicz A, Hochstim CJ, Gronostajski RM, Anderson DJ (2006) The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52(6):953–968. https://doi.org/10.1016/j.neuron.2006.11.019
Kang P, Lee HK, Glasgow SM, Finley M, Donti T, Gaber ZB, Graham BH, Foster AE et al (2012) Sox9 and NFIA coordinate a transcriptional regulatory cascade during the initiation of gliogenesis. Neuron 74(1):79–94. https://doi.org/10.1016/j.neuron.2012.01.024
Nagao M, Ogata T, Sawada Y, Gotoh Y (2016) Zbtb20 promotes astrocytogenesis during neocortical development. Nat Commun 7:11102. https://doi.org/10.1038/ncomms11102
Namihira M, Kohyama J, Semi K, Sanosaka T, Deneen B, Taga T, Nakashima K (2009) Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev Cell 16(2):245–255. https://doi.org/10.1016/j.devcel.2008.12.014
Tsuyama J, Bunt J, Richards LJ, Iwanari H, Mochizuki Y, Hamakubo T, Shimazaki T, Okano H (2015) MicroRNA-153 regulates the acquisition of gliogenic competence by neural stem cells. Stem Cell Reports 5(3):365–377. https://doi.org/10.1016/j.stemcr.2015.06.006
Naka-Kaneda H, Nakamura S, Igarashi M, Aoi H, Kanki H, Tsuyama J, Tsutsumi S, Aburatani H et al (2014) The miR-17/106-p38 axis is a key regulator of the neurogenic-to-gliogenic transition in developing neural stem/progenitor cells. Proc Natl Acad Sci U S A 111(4):1604–1609. https://doi.org/10.1073/pnas.1315567111
Parrish-Aungst S, Shipley MT, Erdelyi F, Szabo G, Puche AC (2007) Quantitative analysis of neuronal diversity in the mouse olfactory bulb. J Comp Neurol 501(6):825–836. https://doi.org/10.1002/cne.21205
Bayer SA (1983) 3H-Thymidine-radiographic studies of neurogenesis in the rat olfactory bulb. Exp Brain Res 50(2–3):329–340
Hinds JW (1968) Autoradiographic study of histogenesis in the mouse olfactory bulb. I. Time of origin of neurons and neuroglia. J Comp Neurol 134(3):287–304. https://doi.org/10.1002/cne.901340304
Brill MS, Ninkovic J, Winpenny E, Hodge RD, Ozen I, Yang R, Lepier A, Gascon S et al (2009) Adult generation of glutamatergic olfactory bulb interneurons. Nat Neurosci 12(12):1524–1533. https://doi.org/10.1038/nn.2416
Wichterle H, Turnbull DH, Nery S, Fishell G, Alvarez-Buylla A (2001) In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development 128(19):3759–3771
Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124(3):319–335
Doetsch F, Alvarez-Buylla A (1996) Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci U S A 93(25):14895–14900
Nielsen JV, Nielsen FH, Ismail R, Noraberg J, Jensen NA (2007) Hippocampus-like corticoneurogenesis induced by two isoforms of the BTB-zinc finger gene Zbtb20 in mice. Development 134(6):1133–1140. https://doi.org/10.1242/dev.000265
Nielsen JV, Blom JB, Noraberg J, Jensen NA (2010) Zbtb20-induced CA1 pyramidal neuron development and area enlargement in the cerebral midline cortex of mice. Cereb Cortex 20(8):1904–1914. https://doi.org/10.1093/cercor/bhp261
Nielsen JV, Thomassen M, Mollgard K, Noraberg J, Jensen NA (2014) Zbtb20 defines a hippocampal neuronal identity through direct repression of genes that control projection neuron development in the isocortex. Cereb Cortex 24(5):1216–1229. https://doi.org/10.1093/cercor/bhs400
Rosenthal EH, Tonchev AB, Stoykova A, Chowdhury K (2012) Regulation of archicortical arealization by the transcription factor Zbtb20. Hippocampus 22(11):2144–2156. https://doi.org/10.1002/hipo.22035
Xie Z, Ma X, Ji W, Zhou G, Lu Y, Xiang Z, Wang YX, Zhang L et al (2010) Zbtb20 is essential for the specification of CA1 field identity in the developing hippocampus. Proc Natl Acad Sci U S A 107(14):6510–6515. https://doi.org/10.1073/pnas.0912315107
Zhuo L, Theis M, Alvarez-Maya I, Brenner M, Willecke K, Messing A (2001) hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 31(2):85–94
Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70–71. https://doi.org/10.1038/5007
Doeppner TR, Kaltwasser B, Teli MK, Sanchez-Mendoza EH, Kilic E, Bahr M, Hermann DM (2015) Post-stroke transplantation of adult subventricular zone derived neural progenitor cells—a comprehensive analysis of cell delivery routes and their underlying mechanisms. Exp Neurol 273:45–56. https://doi.org/10.1016/j.expneurol.2015.07.023
Neuman T, Keen A, Zuber MX, Kristjansson GI, Gruss P, Nornes HO (1993) Neuronal expression of regulatory helix-loop-helix factor Id2 gene in mouse. Dev Biol 160(1):186–195. https://doi.org/10.1006/dbio.1993.1297
Winpenny E, Lebel-Potter M, Fernandez ME, Brill MS, Gotz M, Guillemot F, Raineteau O (2011) Sequential generation of olfactory bulb glutamatergic neurons by Neurog2-expressing precursor cells. Neural Dev 6:12. https://doi.org/10.1186/1749-8104-6-12
Waclaw RR, Wang B, Pei Z, Ehrman LA, Campbell K (2009) Distinct temporal requirements for the homeobox gene Gsx2 in specifying striatal and olfactory bulb neuronal fates. Neuron 63(4):451–465. https://doi.org/10.1016/j.neuron.2009.07.015
Waclaw RR, Allen ZJ 2nd, Bell SM, Erdelyi F, Szabo G, Potter SS, Campbell K (2006) The zinc finger transcription factor Sp8 regulates the generation and diversity of olfactory bulb interneurons. Neuron 49(4):503–516. https://doi.org/10.1016/j.neuron.2006.01.018
Allen ZJ 2nd, Waclaw RR, Colbert MC, Campbell K (2007) Molecular identity of olfactory bulb interneurons: transcriptional codes of periglomerular neuron subtypes. J Mol Histol 38(6):517–525. https://doi.org/10.1007/s10735-007-9115-4
Mitchelmore C, Kjaerulff KM, Pedersen HC, Nielsen JV, Rasmussen TE, Fisker MF, Finsen B, Pedersen KM et al (2002) Characterization of two novel nuclear BTB/POZ domain zinc finger isoforms. Association with differentiation of hippocampal neurons, cerebellar granule cells, and macroglia. J Biol Chem 277(9):7598–7609. https://doi.org/10.1074/jbc.M110023200
Lim DA, Alvarez-Buylla A (2014) Adult neural stem cells stake their ground. Trends Neurosci 37(10):563–571. https://doi.org/10.1016/j.tins.2014.08.006
Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716
Nieto M, Monuki ES, Tang H, Imitola J, Haubst N, Khoury SJ, Cunningham J, Gotz M et al (2004) Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II–IV of the cerebral cortex. J Comp Neurol 479(2):168–180. https://doi.org/10.1002/cne.20322
Dellovade TL, Pfaff DW, Schwanzel-Fukuda M (1998) Olfactory bulb development is altered in small-eye (Sey) mice. J Comp Neurol 402(3):402–418
Fuentealba LC, Rompani SB, Parraguez JI, Obernier K, Romero R, Cepko CL, Alvarez-Buylla A (2015) Embryonic origin of postnatal neural stem cells. Cell 161(7):1644–1655. https://doi.org/10.1016/j.cell.2015.05.041
Furutachi S, Miya H, Watanabe T, Kawai H, Yamasaki N, Harada Y, Imayoshi I, Nelson M et al (2015) Slowly dividing neural progenitors are an embryonic origin of adult neural stem cells. Nat Neurosci 18(5):657–665. https://doi.org/10.1038/nn.3989
Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MV (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 7(11):1233–1241. https://doi.org/10.1038/nn1340
Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 26(30):7907–7918. https://doi.org/10.1523/JNEUROSCI.1299-06.2006
Sohn J, Orosco L, Guo F, Chung SH, Bannerman P, Mills Ko E, Zarbalis K, Deng W et al (2015) The subventricular zone continues to generate corpus callosum and rostral migratory stream astroglia in normal adult mice. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 35(9):3756–3763. https://doi.org/10.1523/JNEUROSCI.3454-14.2015
Zhang R, Zhang Z, Wang L, Wang Y, Gousev A, Zhang L, Ho KL, Morshead C et al (2004) Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism 24(4):441–448. https://doi.org/10.1097/00004647-200404000-00009
Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963–970
Zhang RL, Chopp M, Roberts C, Jia L, Wei M, Lu M, Wang X, Pourabdollah S et al (2011) Ascl1 lineage cells contribute to ischemia-induced neurogenesis and oligodendrogenesis. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism 31(2):614–625. https://doi.org/10.1038/jcbfm.2010.134
Benner EJ, Luciano D, Jo R, Abdi K, Paez-Gonzalez P, Sheng H, Warner DS, Liu C et al (2013) Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4. Nature 497(7449):369–373. https://doi.org/10.1038/nature12069
Faiz M, Sachewsky N, Gascon S, Bang KW, Morshead CM, Nagy A (2015) Adult neural stem cells from the subventricular zone give rise to reactive astrocytes in the cortex after stroke. Cell Stem Cell 17(5):624–634. https://doi.org/10.1016/j.stem.2015.08.002
Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3(3):279–288. https://doi.org/10.1016/j.stem.2008.07.025
Yamashita T, Ninomiya M, Hernandez Acosta P, Garcia-Verdugo JM, Sunabori T, Sakaguchi M, Adachi K, Kojima T et al (2006) Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 26(24):6627–6636
Li L, Harms KM, Ventura PB, Lagace DC, Eisch AJ, Cunningham LA (2010) Focal cerebral ischemia induces a multilineage cytogenic response from adult subventricular zone that is predominantly gliogenic. Glia 58(13):1610–1619. https://doi.org/10.1002/glia.21033
Guo F, Maeda Y, Ma J, Xu J, Horiuchi M, Miers L, Vaccarino F, Pleasure D (2010) Pyramidal neurons are generated from oligodendroglial progenitor cells in adult piriform cortex. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 30(36):12036–12049. https://doi.org/10.1523/JNEUROSCI.1360-10.2010
Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson WD (2008) PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11(12):1392–1401. https://doi.org/10.1038/nn.2220
Salmaso N, Silbereis J, Komitova M, Mitchell P, Chapman K, Ment LR, Schwartz ML, Vaccarino FM (2012) Environmental enrichment increases the GFAP+ stem cell pool and reverses hypoxia-induced cognitive deficits in juvenile mice. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience 32(26):8930–8939. https://doi.org/10.1523/JNEUROSCI.1398-12.2012
Honsa P, Pivonkova H, Dzamba D, Filipova M, Anderova M (2012) Polydendrocytes display large lineage plasticity following focal cerebral ischemia. PLoS One 7(5):e36816. https://doi.org/10.1371/journal.pone.0036816
Soderholm M, Almgren P, Jood K, Stanne TM, Olsson M, Ilinca A, Lorentzen E, Norrving B et al (2016) Exome array analysis of ischaemic stroke: results from a southern Swedish study. European Journal of Neurology: the Official Journal of the European Federation of Neurological Societies 23(12):1722–1728. https://doi.org/10.1111/ene.13086