Young Children’s Structure Sense
Tóm tắt
The ability to easily and flexibly operate with mathematical pattern and structure, in short, having a structure sense is important for mathematics learning. This assumption of a relation between early structure sense and mathematical competences is supported by a longitudinal study with 74 children from kindergarten to second grade. Quantitative analyses reveal a significant, moderate correlation between the two variables at the entry to formal schooling. Furthermore, early structure sense is a predictor for mathematical, in particular, arithmetical competences at the end of grade 2. Its predictive power is almost as good as the explanation of variance by early mathematical abilities. Low and high achieving children’s competences regarding pattern and structure at the beginning of grade 1 are then comparatively analysed in order to evaluate the range of school starters’ early structure sense. The results suggest overall high pre-instructional competences which, however, vary strongly between the mathematical high and low achievers. Cognitive milestones for the development of a sound early structure sense are identified based on the analyses.
Tài liệu tham khảo
Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215–241.
Battista, M., & Clements, D. (1996). Students’ understanding of three-dimensional rectangular arrays of cubes. Journal for Research in Mathematics Education, 27(3), 258–292.
Baur, N. (2004). Kontrolle von Drittvariablen für bivariate Beziehungen. In N. Baur & S. Fromm (Eds.), Datenanalyse mit SPSS für Fortgeschrittene. Ein Arbeitsbuch (pp. 203–225). Wiesbaden: VS Verlag für Sozialwissenschaften.
Burton, G. M. (1982). Patterning: powerful play. School Science and Mathematics, 82(1), 39–44.
Dornheim, D. (2008). Prädiktion von Rechenleistung und Rechenschwäche: Der Beitrag von Zahlen-Vorwissen und Allgemein-kognitiven Fähigkeiten. Berlin: Logos.
Economopoulos, K. (1998). What comes next? The mathematics of pattern in kindergarten. Teaching Children Mathematics, 5(4), 230–234.
Eggert, D., & Bertrand, L. (2002). In RZI – Raum-Zeit-Inventar – der Entwicklung der räumlichen und zeitlichen Dimension bei Kindern im Vorschul- und Grundschulalter und deren Bedeutung für den Erwerb der Kulturtechniken Lesen, Schreiben und Rechnen, Dortmund. Borgmann.
Flick, U. (1999). Qualitative Forschung. Theorie, Methoden, Anwendungen in Psychologie und Sozialwissenschaften. Reinbek bei Hamburg: Rowohlt Taschenbuch Verlag.
Fromm, S. (2004). Multiple lineare Regressionsanalyse. In N. Baur & S. Fromm (Eds.), Datenanalyse mit SPSS für fortgeschrittene. Ein arbeitsbuch (pp. 257–281). Wiesbaden: VS Verlag für Sozialwissenschaften.
Gray, E., Pitta, D., & Tall, D. (2000). Objects, actions and images: a perspective on early number development. Journal of Mathematical Behavior, 18(4), 401–413.
Ginsburg, H., Cannon, J., Eisenband, J., & Pappas, S. (2006). Mathematical thinking and learning. In K. McCartney & D. Phillips (Eds.), Blackwell handbook on early childhood development (pp. 208–230). Malden: Blackwell.
Goldstein, E. B. (2002). Wahrnehmungspsychologie. Heidelberg: Spektrum, Akademischer Verlag.
Hasemann, K., & Stern, E. (2002). Die Förderung des mathematischen Verständnisses anhand von Textaufgaben – Ergebnisse einer Interventionsstudie in Klassen des 2. Schuljahres. Journal Für Mathematik-Didaktik, 23(3/4), 222–242.
Hoch, M., & Dreyfus, T. (2004). Structure sense in high school algebra: the effect of brackets. In M. J. Høines & A. B. Fuglestad (Eds.), Proc. 28th conf. of the int group for the psychology of mathematics education (Vol. 3, pp. 49–56). Bergen: PME.
Hoch, M., & Dreyfus, T. (2006). Structure sense versus manipulation skills: an unexpected result. In J. Novotná, H. Moraová, M. Krátká & N. Stehlíková (Eds.), Proc. 30th conf. of the int. group for the psychology of mathematics education (Vol. 3, pp. 305–312). Prague: PME.
KMK: Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland (Ed.) (2005). Bildungsstandards im Fach Mathematik für den Primarbereich (Jahrgangsstufe 4). München: Kluwer.
Krajewski, K., Liehm, S., & Schneider, W. (2004). DEMAT 2+. Deutscher Mathematiktest für zweite Klassen. Manual. Göttingen: Beltz.
Liljedahl, P. (2004). Repeating pattern or number pattern: the distinction is blurred. Focus on Learning Problems in Mathematics, 26(3), 24–42.
Linchevski, L., & Livneh, D. (1999). Structure sense: the relationship between algebraic and numerical contexts. Educational Studies in Mathematics, 40(2), 173–196.
Lorenz, J. H. (2006). Grundschulkinder rechnen anders. Die Entwicklung mathematischer Strukturen und des Zahlensinns von „Matheprofis“. In E. Rathgeb-Schnierer & U. Roos (Eds.), Wie rechnen Matheprofis? Ideen und Erfahrungen zum offenen Mathematikunterricht (pp. 113–122). München: Oldenbourg.
Lüken, M. M. (2011). School starters’ early structure sense. In B. Ubuz (Ed.), Proc. 35th conf. of the int. group for the psychology of mathematics education (Vol. 3, pp. 353–360). Ankara: PME.
Lüken, M. M. (2012). Muster und Strukturen im mathematischen Anfangsunterricht. Grundlegung und empirische Forschung zum Struktursinn von Schulanfängern. Münster: Waxmann
Mulligan, J. T. (2002). The role of structure in children’s development of multiplicative reasoning. In B. Barton, K. C. Irwin, M. Pfannkuch & M. Thomas (Eds.), Mathematics education in the south pacific, Proceedings of the 25th annual conference of the mathematics education research group of Australasia, Auckland (pp. 497–503). Sydney: MERGA.
Mulligan, J. T. (2011). Towards understanding of the origins of children’s difficulties in mathematics learning. Australian Journal of Learning Difficulties (Special Issue), 16(1), 19–39.
Mulligan, J. T., & Mitchelmore, M. (2009). Awareness of pattern and structure in early mathematical development. Mathematics Education Research Journal, 21(2), 33–49.
Mulligan, J. T., Prescott, A., & Mitchelmore, M. (2004). Children‘s development of structure in early mathematics. In M. J. Høines & A. B. Fuglestad (Eds.), Proc. 28th conf. of the int. group for the psychology of mathematics education (Vol. 2, pp. 393–400). Bergen: PME.
Mulligan, J. T., Prescott, A., Papic, M., & Mitchelmore, M. (2006). Improving early numeracy through a pattern and structure mathematics awareness program (PASMAP). In P. Grootenboer, R. Zevenbergen & M. Chinnappan (Eds.), Identities, cultures and learning spaces, Proceedings of the 29th annual conference of the mathematics education research group of Australasia, Canberra (pp. 376–383). Adelaide: MERGA
NCTM: National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. http://standards.nctm.org/ [Accessed 08 February 2010].
Papic, M., & Mulligan, J. T. (2005). Preschoolers’ mathematical patterning. In P. Clarkson, A. Downton, D. Gronn, M. Horne, A. McDonough, R. Pierce & A. Roche (Eds.), Building connections: theory, research and practice, Proceedings of the 28th annual conference of the mathematics education research group of Australasia, Melbourne (pp. 609–616). Sydney: MERGA
Papic, M., & Mulligan, J. T. (2007). The growth of early mathematical patterning: an intervention study. In J. Watson & K. Beswick (Eds.), Mathematics: essential research, essential practice, Proceedings of the 30th annual conference of the mathematics education research group of Australasia, Hobart (pp. 591–600). Adelaide: MERGA
Papic, M. M., Mulligan, J. T., & Mitchelmore, M. C. (2011). Assessing the development of preschoolers’ mathematical patterning. Journal for Research in Mathematics Education, 42(3), 237–268.
Queensland Studies Authority (2008). Year 1 Learning Statements. http://www.qsa.qld.edu.au [Accessed 30 March 2012].
Radford, L. (2010). The eye as a theoretician: seeing structures in generalizing activities. For the Learning of Mathematics, 30(2), 2–7.
Scherer, P. (1999). Produktives Lernen für Kinder mit Lernschwächen: Fördern durch Fordern. Zwanzigerraum (Vol. 1). Leipzig: Klett-Grundschulverlag.
Schipper, W. (2002). Thesen und Empfehlungen zum schulischen und außerschulischen Umgang mit Rechenstörungen. Journal Für Mathematik-Didaktik, 23(3/4), 243–261.
Schütte, S. (2004). Zur didaktischen Bedeutung eigenstrukturierter Zahlbilder. Praxis Grundschule, 27(2), 5–10.
Söbbeke, E. (2005). In Zur visuellen Strukturierungsfähigkeit von Grundschulkindern – Epistemologische Grundlagen und empirische Fallstudien zu kindlichen Strukturierungsprozessen mathematischer Anschauungsmittel, Hildesheim: Franzbecker.
Steinweg, A. S. (2006). Kinder deuten geometrische Strukturen und Gleichungen. „Ich sehe was, was du auch sehen kannst …“. In E. Rathgeb-Schnierer & U. Roos (Eds.), Wie rechnen Matheprofis? Ideen und Erfahrungen zum offenen Mathematikunterricht (pp. 71–86). München: Oldenbourg
Threlfall, J. (1999). Repeating patterns in the early primary years. In A. Orton (Ed.), Pattern in the teaching and learning of mathematics (pp. 18–30). London: Cassell.
van Luit, J., van de Rijt, B., & Pennings, A. (1994). The Utrecht early numeracy test. Manual. Doetinchem: Graviant Publishing Company.
van Luit, J., van de Rijt, B., & Hasemann, K. (2001). OTZ. Osnabrücker Test zur Zahlbegriffsentwicklung. Manual. Göttingen: Hogrefe.
van Nes, F. (2009). In Young children’s spatial structuring ability and emerging number sense. Utrecht: All Print.
von Glasersfeld, E. (1982). Subitizing: the role of figural patterns in the development of numerical concepts. Archives de Psychologie, 50, 191–218.
Wittmann, E. Ch. (2006). Mathematische Bildung. In L. Fried & S. Roux (Eds.), Pädagogik der frühen Kindheit. Handbuch und Nachschlagewerk (pp. 205–211). Weinheim: Beltz.
Wittmann, E. Ch., & Müller, G. N. (2007). Muster und Strukturen als Fachliches Grundkonzept. In G. Walther, M. van den Heuvel-Panhuizen, D. Granzer & O. Köller (Eds.), Bildungsstandards für die Grundschule: Mathematik konkret (pp. 42–65). Berlin: Cornelsen