YSZ/GDC bilayer and gradient barrier layers deposited by reactive magnetron sputtering for solid oxide cells
Tài liệu tham khảo
Tu, 1999, Ln0.4Sr0.6Co0.8Fe0.2O3−δ (Ln = La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells, Solid State Ionics, 117, 277, 10.1016/S0167-2738(98)00428-7
Constantin, 2013, Efficiency of a dense thin CGO buffer layer for solid oxide fuel cell operating at intermediate temperature, Solid State Ionics, 249–250, 98, 10.1016/j.ssi.2013.07.004
Sonderby, 2013, Strontium diffusion in magnetron sputtered gadolinia-doped ceria thin film barrier coatings for solid oxide fuel cells, Adv. Energy Mater., 3, 923, 10.1002/aenm.201300003
Klemenso, 2011, High performance metal-supported solid oxide fuel cells with Gd-doped ceria barrier layers, J. Power Sources, 196, 9459, 10.1016/j.jpowsour.2011.07.014
Sonderby, 2014, Magnetron sputtered gadolinia-doped ceria diffusion barriers for metal-supported solid oxide fuel cells, J. Power Sources, 267, 452, 10.1016/j.jpowsour.2014.05.101
Fonseca, 2010, Properties of bias-assisted sputtered gadolinia-doped ceria interlayers for solid oxide fuel cells, J. Power Sources, 195, 1599, 10.1016/j.jpowsour.2009.09.050
Tsoga, 2000, Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC Technology, Acta Mater., 48, 4709, 10.1016/S1359-6454(00)00261-5
Jordan, 2008, Ce0.8Gd0.2O2−δ protecting layers manufactured by physical vapor deposition for IT-SOFC, Solid State Ionics, 179, 919, 10.1016/j.ssi.2007.12.008
Mai, 2006, Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells part II. Influence of the CGO interlayer, Solid State Ionics, 177, 2103, 10.1016/j.ssi.2005.12.010
Uhlenbruck, 2007, Thin film coating technologies of (Ce,Gd)O2−δ interlayers for application in ceramic high-temperature fuels cells, Thin Solid Films, 515, 4053, 10.1016/j.tsf.2006.10.127
Thiele, 1991, Deposition and properties of yttria-stabilized zirconia thin films using reactive direct current magnetron sputtering, J. Vac. Sci. Technol. A, 9, 3054, 10.1116/1.577172
Tsoga, 1998, Performance of a double-layer CGO/YSZ electrolyte for solid oxide fuel cells, Ionics, 4, 234, 10.1007/BF02375951
Lim, 2009, Measurement of oxygen chemical potential in Gd2O3-doped ceria-Y2O3-stabilized zirconia bi-layer electrolyte, anode-supported solid oxide fuel cells, J. Power Sources, 192, 267, 10.1016/j.jpowsour.2009.03.035
Brahim, 2006, Electrical properties of thin bilayered YSZ/GDC SOFC electrolyte elaborated by sputtering, J. Power Sources, 156, 45, 10.1016/j.jpowsour.2005.08.017
Coddet, 2011, Reactive co-sputter deposition of YSZ coatings using plasma emission monitoring, Surf. Coat. Technol., 205, 3987, 10.1016/j.surfcoat.2011.02.024
Fondard, 2014, Synthesis and characterization of La2NiO4+ coatings deposited by reactive magnetron sputtering using plasma emission monitoring, Solid State Ionics, 265, 73, 10.1016/j.ssi.2014.07.017
Zhao, 2006, Optimization of an industrial DC magnetron sputtering process for graded composition solar thermal absorbing layer, Sol. Energy Mater. Sol. Cells, 90, 308, 10.1016/j.solmat.2005.03.018
Polat, 2016, Functionally graded Si based thin films as negative electrodes for next generation lithium ion batteries, Electrochim. Acta, 187, 293, 10.1016/j.electacta.2015.11.052
Coddet, 2018, Multistep magnetron sputtering process and in-situ heat treatment to manufacture thick, dense and fully oxidized YSZ films, Surf. Coat. Technol., 349, 133, 10.1016/j.surfcoat.2018.05.065
Coddet, 2018, Characteristics and properties of a magnetron sputtered gadolinia-doped ceria barrier layer for solid oxide electrochemical cells, Surf. Coat. Technol., 339, 57, 10.1016/j.surfcoat.2018.01.079