Xylo- and cello-oligosaccharide oxidation by gluco-oligosaccharide oxidase from Sarocladium strictumand variants with reduced substrate inhibition

Biotechnology for Biofuels - Tập 6 Số 1 - 2013
Thu V. Vuong1, Arja-Helena Vesterinen2, Maryam Foumani1, M. Juvonen3, Jukka Seppälä2, Maija Tenkanen3, Emma R. Master1
1Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
2Department of Biotechnology and Chemical Technology, Aalto University, Kemistintie 1 D1, Espoo, 02150, Finland
3Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, Helsinki, 00014, Finland

Tóm tắt

Abstract Background The oxidation of carbohydrates from lignocellulose can facilitate the synthesis of new biopolymers and biochemicals, and also reduce sugar metabolism by lignocellulolytic microorganisms, reserving aldonates for fermentation to biofuels. Although oxidoreductases that oxidize cellulosic hydrolysates have been well characterized, none have been reported to oxidize substituted or branched xylo-oligosaccharides. Moreover, this is the first report that identifies amino acid substitutions leading to GOOX variants with reduced substrate inhibition. Results The recombinant wild type gluco-oligosaccharide oxidase (GOOX) from the fungus Sarocladium strictum, along with variants that were generated by site-directed mutagenesis, retained the FAD cofactor, and showed high activity on cello-oligosaccharide and xylo-oligosaccharides, including substituted and branched xylo-oligosaccharides. Mass spectrometric analyses confirmed that GOOX introduces one oxygen atom to oxidized products, and 1H NMR and tandem mass spectrometry analysis confirmed that oxidation was restricted to the anomeric carbon. The A38V mutation, which is close to a predicted divalent ion-binding site in the FAD-binding domain of GOOX but 30 Å away from the active site, significantly increased the k cat and catalytic efficiency of the enzyme on all oligosaccharides. Eight amino acid substitutions were separately introduced to the substrate-binding domain of GOOX-VN (at positions Y72, E247, W351, Q353 and Q384). In all cases, the K m of the enzyme variant was higher than that of GOOX, supporting the role of corresponding residues in substrate binding. Most notably, W351A increased K m values by up to two orders of magnitude while also increasing k cat up to 3-fold on cello- and xylo-oligosaccharides and showing no substrate inhibition. Conclusions This study provides further evidence that S. strictum GOOX has broader substrate specificity than the enzyme name implies, and that substrate inhibition can be reduced by removing aromatic side chains in the -2 binding subsite. Of the enzyme variants, W351A might be particularly advantageous when oxidizing oligosaccharides present at high substrate concentrations often experienced in industrial processes.

Từ khóa


Tài liệu tham khảo

Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B: Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels. 2013, 6: 41-10.1186/1754-6834-6-41.

Henriksson G, Johansson G, Pettersson G: A critical review of cellobiose dehydrogenases. J Biotechnol. 2000, 78: 93-113. 10.1016/S0168-1656(00)00206-6.

Bankar SB, Bule MV, Singhal RS, Ananthanarayan L: Glucose oxidase-an overview. Biotechnol Adv. 2009, 27: 489-501.

Prongjit M, Sucharitakul J, Wongnate T, Haltrich D, Chaiyen P: Kinetic mechanism of pyranose 2-oxidase from Trametes multicolor. Biochemistry. 2009, 48: 4170-4180. 10.1021/bi802331r.

Whittaker JW: Free radical catalysis by galactose oxidase. Chem Rev. 2003, 103: 2347-2363. 10.1021/cr020425z.

Lee MH, Lai WL, Lin SF, Hsu CS, Liaw SH, Tsai YC: Structural characterization of glucooligosaccharide oxidase from Acremonium strictum. Appl Environ Microbiol. 2005, 71: 8881-8887. 10.1128/AEM.71.12.8881-8887.2005.

Foumani M, Vuong TV, Master ER: Altered substrate specificity of the gluco-oligosaccharide oxidase from Acremonium strictum. Biotechnol Bioeng. 2011, 108: 2261-2269. 10.1002/bit.23149.

Summerbell RC, Gueidan C, Schroers HJ, de Hoog GS, Starink M, Rosete YA, Guarro J, Scott JA: Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium. Stud Mycol. 2011, 68: 139-162. 10.3114/sim.2011.68.06.

Fan Z, Oguntimein GB, Reilly PJ: Characterization of kinetics and thermostability of Acremonium strictum glucooligosaccharide oxidase. Biotechnol Bioeng. 2000, 68: 231-237. 10.1002/(SICI)1097-0290(20000420)68:2<231::AID-BIT12>3.0.CO;2-D.

Lin S-F, Yang T-Y, Inukai T, Yamasaki M, Tsai Y-C: Purification and characterization of a novel glucooligosaccharide oxidase from Acremonium strictum T1. Biochim Biophys Acta. 1991, 1118: 41-47. 10.1016/0167-4838(91)90439-7.

van Hellemond EW, Leferink NG, Heuts DP, Fraaije MW, van Berkel WJ: Occurrence and biocatalytic potential of carbohydrate oxidases. Adv Appl Microbiol. 2006, 60: 17-54.

Cruys-Bagger N, Ren G, Tatsumi H, Baumann MJ, Spodsberg N, Andersen HD, Gorton L, Borch K, Westh P: An amperometric enzyme biosensor for real-time measurements of cellobiohydrolase activity on insoluble cellulose. Biotechnol Bioeng. 2012, 109: 3199-3204. 10.1002/bit.24593.

Fan Z, Wu W, Hildebrand A, Kasuga T, Zhang R, Xiong X: A novel biochemical route for fuels and chemicals production from cellulosic biomass. PLoS One. 2012, 7: e31693-10.1371/journal.pone.0031693.

Huang CH, Winkler A, Chen CL, Lai WL, Tsai YC, Macheroux P, Liaw SH: Functional roles of the 6-S-cysteinyl, 8alpha-N1-histidyl FAD in glucooligosaccharide oxidase from Acremonium strictum. J Biol Chem. 2008, 283: 30990-30996. 10.1074/jbc.M804331200.

Heuts DP, Winter RT, Damsma GE, Janssen DB, Fraaije MW: The role of double covalent flavin binding in chito-oligosaccharide oxidase from Fusarium graminearum. Biochem J. 2008, 413: 175-183. 10.1042/BJ20071591.

Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunaes AC, Stenstrom Y, MacKenzie A, Sorlie M, Horn SJ, Eijsink VG: Cleavage of cellulose by a CBM33 protein. Protein Sci. 2011, 20: 1479-1483. 10.1002/pro.689.

Nordkvist M, Nielsen PM, Villadsen J: Oxidation of lactose to lactobionic acid by a Microdochium nivale carbohydrate oxidase: kinetics and operational stability. Biotechnol Bioeng. 2007, 97: 694-707. 10.1002/bit.21273.

Kalisz HM, Hecht HJ, Schomburg D, Schmid RD: Effects of carbohydrate depletion on the structure, stability and activity of glucose oxidase from Aspergillus niger. Biochim Biophys Acta. 1991, 1080: 138-142. 10.1016/0167-4838(91)90140-U.

Scrutton NS: Identification of covalent flavoproteins and analysis of the covalent link. Methods Mol Biol. 1999, 131: 181-193.

Huang CH, Lai WL, Lee MH, Chen CJ, Vasella A, Tsai YC, Liaw SH: Crystal structure of glucooligosaccharide oxidase from Acremonium strictum: a novel flavinylation of 6-S-cysteinyl, 8alpha-N1-histidyl FAD. J Biol Chem. 2005, 280: 38831-38838. 10.1074/jbc.M506078200.

Nouaille R, Matulova M, Patoprsty V, Delort AM, Forano E: Production of oligosaccharides and cellobionic acid by Fibrobacter succinogenes S85 growing on sugars, cellulose and wheat straw. Appl Microbiol Biotechnol. 2009, 83: 425-433. 10.1007/s00253-009-1884-0.

Higham CW, Gordon-Smith D, Dempsey CE, Wood PM: Direct 1H NMR evidence for conversion of beta-D-cellobiose to cellobionolactone by cellobiose dehydrogenase from Phanerochaete chrysosporium. FEBS Lett. 1994, 351: 128-132. 10.1016/0014-5793(94)00847-7.

Asam MR, Glish GL: Tandem mass spectrometry of alkali cationized polysaccharides in a quadrupole ion trap. J Am Soc Mass Spectr. 1997, 8: 987-995. 10.1016/S1044-0305(97)00124-4.

Hofmeister GE, Zhou Z, Leary JA: Linkage position determination in lithium-cationized disaccharides: tandem mass spectrometry and semiempirical calculations. J Am Chem Soc. 1991, 113: 5964-5970. 10.1021/ja00016a007.

Pasanen S, Janis J, Vainiotalo P: Cello-, malto- and xylooligosaccharide fragmentation by collision-induced dissociation using QIT and FT-ICR mass spectrometry: a systematic study. Int J Mass Spectrom. 2007, 263: 22-29. 10.1016/j.ijms.2006.12.002.

Heuts DPHM, Janssen DB, Fraaije MW: Changing the substrate specificity of a chitooligosaccharide oxidase from Fusarium graminearum by model-inspired site-directed mutagenesis. FEBS Lett. 2007, 581: 4905-4909. 10.1016/j.febslet.2007.09.019.

LiCata VJ, Allewell NM: Is substrate inhibition a consequence of allostery in aspartate transcarbamylase?. Biophys Chem. 1997, 64: 225-234. 10.1016/S0301-4622(96)02204-1.

Pastell H, Tuomainen P, Virkki L, Tenkanen M: Step-wise enzymatic preparation and structural characterization of singly and doubly substituted arabinoxylo-oligosaccharides with non-reducing end terminal branches. Carbohydr Res. 2008, 343: 3049-3057. 10.1016/j.carres.2008.09.013.

Rantanen H, Virkki L, Tuomainen P, Kabel M, Schols H, Tenkanen M: Preparation of arabinoxylobiose from rye xylan using family 10 Aspergillus aculeatus endo-1,4-beta-D-xylanase. Carbohyd Polym. 2007, 68: 350-359. 10.1016/j.carbpol.2006.11.022.

Koutaniemi S, Guillon F, Tranquet O, Bouchet B, Tuomainen P, Virkki L, Petersen HL, Willats WG, Saulnier L, Tenkanen M: Substituent-specific antibody against glucuronoxylan reveals close association of glucuronic acid and acetyl substituents and distinct labeling patterns in tree species. Planta. 2012, 236: 739-751. 10.1007/s00425-012-1653-7.

Packer NH, Lawson MA, Jardine DR, Redmond JW: A general approach to desalting oligosaccharides released from glycoproteins. Glycoconj J. 1998, 15: 737-747. 10.1023/A:1006983125913.

Chong SL, Nissila T, Ketola RA, Koutaniemi S, Derba-Maceluch M, Mellerowicz EJ, Tenkanen M, Tuomainen P: Feasibility of using atmospheric pressure matrix-assisted laser desorption/ionization with ion trap mass spectrometry in the analysis of acetylated xylooligosaccharides derived from hardwoods and Arabidopsis thaliana. Anal Bioanal Chem. 2011, 401: 2995-3009. 10.1007/s00216-011-5370-z.

Domon B, Costello C: A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J. 1988, 5: 397-409. 10.1007/BF01049915.