Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phát hiện khuyết tật và chất gây ô nhiễm trong ngành thực phẩm bằng tia X
Tóm tắt
Khả năng của tia X trong việc xuyên qua vật chất và phát hiện các chất gây ô nhiễm hoặc khuyết tật ẩn giấu đã dẫn đến việc sử dụng rộng rãi trong các ngành công nghiệp sản xuất để kiểm tra chất lượng. Những khó khăn vốn có trong việc phát hiện khuyết tật và chất gây ô nhiễm trong các sản phẩm thực phẩm đã giữ cho việc sử dụng tia X trong ngành này chủ yếu chỉ giới hạn ở lĩnh vực thực phẩm đóng gói. Tuy nhiên, nhu cầu về kiểm tra sản phẩm bên trong không phá hủy đã thúc đẩy một nỗ lực nghiên cứu đáng kể trong lĩnh vực này suốt nhiều thập kỷ. Những cải tiến trong công nghệ, đặc biệt là các nguồn điện áp cao nhỏ gọn và giá cả phải chăng hơn, tính toán tốc độ cao và các mảng cảm biến có độ phân giải cao, đã làm cho nhiều nhiệm vụ phát hiện tia X có thể thực hiện được ngày nay mà trước đây là không khả thi. Những cải tiến này có thể được kỳ vọng sẽ tiếp tục trong tương lai. Mục đích của bài báo này là để đưa ra một cái nhìn tổng quan về hoạt động nghiên cứu liên quan đến việc sử dụng hình ảnh tia X để phát hiện các khuyết tật và chất gây ô nhiễm trong hàng hóa nông sản và thảo luận về những cải tiến công nghệ cần thiết để nâng cao khả năng phát hiện này.
Từ khóa
#tia X #khuyết tật #chất gây ô nhiễm #ngành thực phẩm #kiểm tra chất lượng #công nghệ phát hiệnTài liệu tham khảo
Commission of the European Communities White Paper on Food Safety. http://ec.europa.edu/dgs/health_consumer/library/pub/pub06_en.pdf. (2000). Accessed on 4-2-2007
T.C. Pearson, Detection of pistachio nuts with closed shells using impact acoustics. Appl. Eng. Agric. 17, 1 (2001)
D.F. Bodies, in Food, ed. by M. Edwards (Woodhead Publishing Company, Cambridge, 2007)
P. Butz, C. Hofmann, B. Tauscher, Recent developments in noninvasive techniques for fresh fruit and vegetable internal quality analysis. J Food Sci 70, 131 (2005)
M. Graves, A. Smith, B.G. Batchelor, Approaches to foreign body detection in foods. Trends. Food Sci. Technol. 9, 21 (1998). doi:10.1016/S0924-2244(97)00003-4
J.A. Abbott, R. Lu, B.L. Upchurch, R.L. Stroshine, Technologies for nondestructive quality evaluation of fruits and vegetables, in Horticultural Reviews Vol. 20, ed. by J. Janick (Wiley, Chichester, U.K., 1997)
J.A. Abbott, Quality measurements of fruits and vegetables. Postharvest. Biol. Technol. 15, 207 (1999). doi:10.1016/S0925-5214(98)00086-6
S.N. Jha, T. Matsuoka, Non-destructive techniques for quality evaluation of intact fruits and vegetables. Food Sci. Technol. Res. 6, 248 (2000). doi:10.3136/fstr.6.248
M. Graves, B.G. Batchelor, S.C. Palmer, Three-dimensional X-ray inspection of food products. Applications of digital image, in Applications of Digital Image Processing XVII, SPIE Proceedings Vol. 2298, edited by A. G. Tescher (1994), p. 248
G.G. Wagner, Combining X-ray imaging and machine vision, in Optics, illumination, and Image Sensing for Machine Vision II, SPIE Proceedings, ed. by D.J. Svetkoff, vol. 850 (Bellingham, WA, 1987), p. 45
D.S. Jayas, C. Karunakaran, J. Paliwal, Grain quality monitoring using machine vision and soft X-ray for cereal grains, in Proceedings of the International Quality Grains Conference, Indianapolis, 2004
X. Chen, H. Jing, Y. Tao, L. Carr, F. Wheaton, Real-time detection of physical hazards in de-bonded poultry using high resolution X-ray imaging, in Proceedings of the ASAE/CSAE Annual International Meeting, Las Vegas, 2003. Paper #033084
K.S. Lim, M. Barigou, X-ray micro-computed tomography of cellular food products. Food Res. Int. 37, 1001 (2004). doi:10.1016/j.foodres.2004.06.010
G. Martens, H. Bomsdorf, G. Harding, J. Kanzenbach, R. Linde, Coherent X-ray scatter for foodstuff contamination detection. SPIE 2092, 387 (1993). doi:10.1117/12.171258
C.R. Bull, R. Zwiggelaar, Discrimination between low atomic number materials from their characteristic scattering of X-ray radiation. J. Agric. Eng. Res. 68, 77 (1997). doi:10.1006/jaer.1997.0181
C.R. Bull, R. Zwiggelaar, R.D. Speller, Review of inspection techniques based on the elastic and inelastic scattering of X-rays and their potential in the food and agricultural industry. J. Food Eng. 33, 167 (1997). doi:10.1016/S0260-8774(97)88544-5
Guide to X-ray inspection by safeline. http://www.Safelinexray.com/about-X-ray.html (2007). Accessed on 11-24-2007
R.P. Haff, T.C. Pearson, Separating in-shell pistachio nuts from kernels using impact vibration analysis. Sens. Instrum. Food Qual. 1, 188 (2007). doi:10.1007/s11694-007-9020-2
T.M. Brosnan, W.D. Daley, M.J.T. Smith, Comparison of image analysis techniques for defect detection in food-processing applications, in Optics in Agriculture, Forestry, and Biological Processing II, SPIE Proceedings, 1996, vol. 2907, ed. by G.E. Meyer, J.A. DeShazer, p. 186
D.P. Casasent, M.A. Sipe, T.F. Schatzki, P.M. Keagy, L.C. Le, Neural net classification of X-ray pistachio nut data, in Optics in Agriculture, Forestry, and Biological Processing II, SPIE Proceedings, 1996, vol. 2907, ed. by G.E. Meyer, J.A. DeShazer, p. 217
A. Talukder, D.P. Casasent, H.-W. Lee, P.M. Keagy, T.F. Schatzki, A new feature extraction method for classification of agricultural products from X-ray images, in Precision Agriculture and Biological Quality, SPIE Proceedings, 1998, vol. 3543, ed. by G.E. Meyer, J.A. DeShazer, p. 53
Z. Chen, Y. Tao, H. Jing, J. Walker, Internal inspection of deboned poultry using X-ray imaging and adaptive thresholding. Trans. ASABE 44 (2001)
C. Krger, C.M. Bartle, J.G. West, V.-H. Tran, Digital X-ray imaging and image processing for object detection in closed containers, in Proceedings of the Computer Graphics and Imaging Conference, Kauaii, 2004, ed. by M.H. Hamza. Paper #426-025
M.A. Shahin, E.W. Tollner, S.E. Prussia, Filter design for optimal feature extraction from X-ray images. Trans. ASABE 42, 1879 (1999)
K.R. Castleman, Digital Image Processing (Prentice Hall, Englewood Cliffs, 1979)
R.P. Haff, X-ray inspection of wheat for granary weevils. Ph.D. thesis, University of California, Davis, 2001
P. Horowitz, W. Hill, The Art of Electronics (Cambridge University Press, New York, 1989)
A. Rosenfeld, A.C. Kak, Digital Image Processing (Academic Press, Orlando, 1982)
A.K. Jain, Fundamentals of Digital Image Processing (Prentice Hall, Englewood Cliffs, 1989)
Z. Chen, Y. Tao, X. Chen, Y. Ying, Contrast enhancement of X-ray imaging and postprocessing for food internal inspection, in Proceedings of the ASAE/CSAE Annual International Meeting (Milwaukee, 2000). Paper #033084
N. Kotwaliwale, J. Subbiah, P. Weckler, G. Brusewitz, G.A. Kranzler, Digital radiography for quality determination of small agricultural products: development and calibration of equipment, in Proceedings of the ASAE/CSAE Annual International Meeting (Las Vegas, 2003). Paper #036231
Z. Chen, Y. Tao, C. Xin, Multiresolution local contrast enhancement of X-ray images for poultry meat inspection. Appl. Opt 40, 1195 (2001). doi:10.1364/AO.40.001195
R. Zwiggelaar, C.R. Bull, M.J. Mooney, S. Czarnes, The detection of “soft” materials by selective energy X-ray transmission imaging and computer tomography. J. Agric. Eng. Res. 66, 203 (1997). doi:10.1006/jaer.1996.0134
T.F. Schatzki, P.M. Keagy, Effect of image size and contrast on the recognition of insects, in Optics in Agriculture, SPIE Proceedings, 1991, vol. 1379, ed. by J.A. DeShazer G.E. Meyer, p. 182
R. Zwiggelaar, C.R. Bull, M.J. Mooney, X-ray simulations for imaging applications in the agricultural and food industries. J. Agric. Eng. Res. 63, 161 (1996). doi:10.1006/jaer.1996.0018
M. Graves, A. Smith, B.G. Batchelor, S.C. Palmer, Design and analysis of X-ray vision systems for high-speed detection of foreign body contamination in food, in Machine Vision Applications, Architectures, and Systems Integration III, SPIE Proceedings, ed. by B.G. Batchelor, S.S. Solomon, F.M. Waltz, vol. 2347 (1994), p. 80
R.P. Haff, T.F. Schatzki, Image restoration of line-scanned X-ray images. Opt. Eng. 36, 3288 (1997). doi:10.1117/1.601568
T.F. Schatzki, A. Grossman, R. Young, Recognition of agricultural objects by shape. IEEE. T. Pattern Anal. 5, 645 (1983)
T.F. Schatzki, R. Young, R. Duryea, Detection of agricultural items by image processing, in Proceeds of the ASAE National Conference on Agricultural Electronics Applications, (1984), p. 631
T.F. Schatzki, Detection of agricultural contraband in luggage. US. Patent #4,539,648 1985
T.F. Schatzki, R. Young, X-Ray imaging of baggage for agricultural contraband. J. Transp. Eng. 114, 657 (1988)
T.F. Schatzki, Effectiveness of screening methods for contraband recovery. J. Econ. Entomol. 84, 489 (1991)
T.F. Schatzki, R.Y. Wong, Detection of submilligram inclusions of heavy metals in processed foods. Food Technol.-Chicago 43, 72 (1989)
T.F. Schatzki, R. Young, R.P. Haff, J.G. Eye, G.R. Wright, Visual detection of particulates in X-ray images of processed meat products. Opt. Eng. 35, 2286 (1996). doi:10.1117/1.601010
J.L. Cambier, D.C. Pasiak, On-Line X-ray inspection of packaged foods, in Proceedings of the SME Conference on Vision (Detroit, 1986), p. 1
D.W. Penman, O.J. Olsson, D. Beach, Automatic X-ray inspection of canned products for foreign material, in Machine Vision Applications, Architectures, and Systems, SPIE Proceedings, ed. by B.G. Batchelor, S.S. Solomon, F.M. Waltz, vol. 1823 (1992), p. 342
B.G. Batchelor, E.R. Davies, Using X-rays to detect foreign bodies. in Detecting foreign bodies in food, ed. by M. Edwards (Woodhead Publishing, Boca Raton, 2004), Chap. 13, p. 226
D. Patel, E.R. Davies, I. Hannah, Towards a breakthrough in the detection of contaminants in food products. Sens. Rev. 15, 27 (1995). doi:10.1108/02602289510085570
R. Dearden, Automatic X-ray inspection for the food industry. Food Sci.Technol. Today 10, 87 (1996)
Y. Ogawa, K. Morita, S. Tanaka, M. Setoguchi, C.N. Thai, Application of X-ray CT for detection of physical foreign materials in foods. Trans. ASAE 41, 157 (1998)
Y. Tao, J.G. Ibarra, Thickness-compensated X-ray imaging detection of bone fragments in deboned poultry-model analysis. Trans. ASABE 43, 453 (2000)
H. Jing, X. Chen, Y. Tao, Analysis of factors influencing the mapping accuracy of X-ray and laser range images in a bone fragment detection system, in Proceedings of the ASAE/CSAE Annual International Meeting (Las Vegas, 2003). Paper #036191
C. Karunakaran, J. Paliwal, D.S. Jayas, N.D.G. White, Comparison of soft X-rays and NIR spectroscopy to detect insect infestations in grain, in Proceedings of the ASAE/CSAE Annual International Meeting (Tampa, 2005). Paper #053139
M.D. Towes, T.C. Pearson, J.F. Campbell, Imaging and automated detection of Sitophilus oryzae (Coleoptera: Curculionidae) pupae in hard red winter wheat. J. Econ. Entomol. 99, 583 (2006)
M.D. Towes, T.C. Pearson, J.F. Campbell, Rapid detection of internal insect infestations in bulk grain, in Proceedings of the Entomological Society of America Annual meeting and Exhibition (Fort Lauderdale, 2005). Paper No.1070
P.M. Keagy, T.F. Schatzki, Effect of image resolution on insect detection in wheat radiographs. Cereal Chem. 68, 339 (1991)
T.F. Schatzki, T.A. Fine, Analysis of radiograms of wheat kernels for quality control. Cereal Chem. 65, 233 (1989)
R.P. Haff, D.C. Slaughter, Real-time X-ray inspection of wheat for infestation by the granary weevil, Sitophilus granarius (L.). Trans. ASAE 47, 531 (2004)
R.P. Haff, D.C. Slaughter, X-ray inspection of wheat for granary weevils. Real-time digital imaging vs. film in Proceedings of the ASAE/CSAE Annual International Meeting (Chicago, 2002). Paper #026093
R.P. Haff, N. Toyofuku, An economical method for X-ray inspection of wheat, in Proceedings of the ASAE/CSAE Annual International Meeting (Milwaukee, 2000). Paper #003069
P.M. Keagy, T.F. Schatzki, Machine recognition of weevil damage in wheat radiograms. Cereal Chem. 70, 696 (1993)
D.S. Jayas, C. Karunakaran, N.D.G. White, Soft X-ray image analysis to detect wheat kernels damaged by Plodia interpunctella (Lepidoptera: Pyralidae). Sci. Aliments 23, 180
C. Karunakaran, D.S. Jayas, N.D.G. White, Soft X-ray inspection of wheat kernels infested by Sitophilus oryzae. Trans. ASAE 46, 739 (2003)
C. Karunakaran, D.S. Jayas, N.D.G. White, X-ray image analysis to detect infestations caused by insects in grain. Cereal Chem. 80, 553 (2003). doi:10.1094/CCHEM.2003.80.5.553
C. Karunakaran, D.S. Jayas, N.D.G. White, Mass determination of wheat kernels from X-ray images, in Proceedings of the ASAE/CSAE Annual International Meeting (Ottawa, 2004). Paper #043120
J.D. Hansen, R.P. Haff, D.W. Schlaman, W.L. Yee, Potential postharvest use of radiography to detect internal pests in deciduous tree fruits. J. Entomol. Sci. 40, 255 (2005)
T.F. Schatzki, R.P. Haff, I. Can, L.C. Le, N. Toyofuku, Defect detection in apples by means of X-ray imaging. Trans. ASAE 40, 1407 (1997)
T.F. Schatzki, R.P. Haff, R. Young, I. Can, L.C. Le, N. Toyofuku, Defect detection in apples by means of X-ray imaging, in Optics in Agriculture, Forestry, and Biological Processing II, SPIE Proceedings, ed. by G.E. Meyer, J.A. DeShazer, vol. 2907 (1996), p. 176
T. Lin, H. Chang, K. Wu, et al, An adaptive image segmentation algorithm for X-ray quarantine inspection of selected fruits, in Proceedings of the ASAE/CSAE Annual International Meeting (Tampa, 2005). Paper #053123
G.C. Marlow, W.H. Loeschner, Watercore. Hortic. Rev. (Am. Soc. Hortic. Sci.) 6, 189 (1984)
M.A. Shahin, E.W. Tollner, J.L. McClelland, Artificial intelligence classifiers for sorting apples based on watercore. J. Agric. Eng. Res. 79, 265 (2007). doi:10.1006/jaer.2001.0705
S. Kim, T.F. Schatzki, Apple watercore sorting system using X-ray imagery: I. Algorithm development. Trans. ASAE 43, 1695 (2000)
M.A. Shahin, E.W. Tollner, M.D. Evans, H.R. Arabnia, Filter design for optimal feature extraction from X-ray images. Trans. ASAE 42, 1879 (1999)
E.W. Tollner, Y.C. Hung, B.L. Upchurch, S.E. Prussia, Relating X-ray absorption to density and water content in apples. Trans. ASAE 35, 1921 (1992)
P.M. Keagy, B. Parvin, T.F. Schatzki, Machine recognition of naval orange worm damage in X-ray images of pistachio nuts. Lebensm. Wiss. Technol. 29, 140 (1996)
P.M. Keagy, T.F. Schatzki, L.C. Le, D.P. Casasent, D. Weber, Expanded image database of pistachio X-ray images and classification by conventional methods, in Optics in Agriculture, Forestry, and Biological Processing II, SPIE Proceedings, ed. by G. E. Meyer, J.A. DeShazer, vol. 2907 (1996), p. 196
D.P. Casasent, M.A. Sipe, T.F. Schatzki, P.M. Keagy, L.C. Le, Neural net classification of X-ray pistachio nut data. Lebensm. Wiss. Technol. 31, 122 (1998)
A. Sim, B. Parvin, P.M. Keagy, Invariant representation and hierarchical network for inspection of nuts from X-ray images, in Proceedings of the IEEE International Conference on Neural Networks, vol. 2 (Perth, 1995), p. 738
D.P. Casasent, A. Talukder, P.M. Keagy, T.F. Schatzki, Detection and segmentation of items in X-ray imagery. Trans. ASAE 44, 337 (2001)
S. Kim, T.F. Schatzki, Detection of pinholes in almonds by X-ray imaging. Trans. ASAE 44, 997 (2001)
R.D. Harrison, W.A. Gardner, E.W. Tollner, D.J. Kinard, X-ray computed tomography studies of the burrowing behavior of the fourth-instar pecan weevil(coleoptera:Curculionidae). J. Econ. Entomol. 86, 1714 (2007)
J.K. Brecht, R.L. Shewfelt, J.C. Garner, E.W. Tollner, Using X-ray computed tomography (X-ray CT) to nondestructively determine maturity of green tomatoes. HortScience 26, 45 (1991)
E.G. Barcelon, S. Tojo, K. Watanabe, X-rat CT imaging and quality detection of peach at different physiological maturity. Trans. ASABE 42, 435 (2007)
J. Lammertyn, B. Nicolai, P. Jancsok, J. De Baerdemaeker, T. Dresselaers, P. Van Hecke, X-ray CT and magnetic resonance imaging to study the development of core breakdown in ‘Conference’ pears, in Proceedings of the ASAE/CSAE Annual International Meeting (Sacramento, 2001). Paper #016037
L. Sonego, R. Ben-Arie, J. Raynal, J.C. Pech, Biochemical and physical evaluation of textural characteristics of nectarines exhibiting woolly breakdown: NMR imaging, X-ray computed tomography. Postharvest Biol. Technol. 5, 187 (1995). doi:10.1016/0925-5214(94)00026-O
E.W. Tollner, R.D. Gitaitis, K.W. Seebold, B.W. Maw, Experiences with a food product X-ray inspection system for classifying onions. Appl. Eng. Agric. 21, 907 (2005)
M.A. Shahin, E.W. Tollner, R.D. Gitaitis, D.R. Sumner, B.W. Maw, Classification of sweet onions based on internal defects using image processing and neural network techniques. Trans. ASAE 21, 907 (2002)
E.W. Tollner, S.G. Pandalai, Efficacy and Economics of Placing X-ray machines in an onion packinghouse. Recent Res. Dev. Crop Sci. 1, 55 (2003)
P. Thomas, A. Kannan, V.H. Degwekar, M.S. Ramamurthy, Non-destructive detection of seed weevil-infested mango fruits by X-ray imaging. Postharvest Biol. Technol. 5, 161 (1995). doi:10.1016/0925-5214(94)00019-O
R.P. Haff, D.C. Slaughter, Y. Sarig, A. Kader, X-ray assessment of translucency in pineapple. J. Food Process. Preserv. 30, 527 (2006). doi:10.1111/j.1745-4549.2006.00086.x
R.E. Nylund, I.M. Lutz, Separation of hollow heart potato tubers by mean of size grading, specific gravity and X-ray examination. Am. Potato J. 27, 214 (1950). doi:10.1007/BF02850188
E.S. Jackson, R.P. Haff, X-ray detection of and sorting of olives damaged by fruit fly, in Proceedings of the ASAE/CSAE Annual International Meeting (Portland, 2006). Paper #066062
R.P. Haff, Real-time correction of distortion in X-ray images of cylindrical or spherical objects and its application to agricultural commodities. Trans. ASABE 51, 341 (2008)