X‐Ray Absorption Spectroscopy on Free Molecules
Tóm tắt
The most recent spectroscopic method that can be applied to chemical problems is X‐ray absorption spectroscopy, in which the excitation of individual core electrons of an atom is studied. The analysis of the spectra with the aid of simple theoretical models yields information both about the core orbitals of the atom and about the unoccupied molecular orbitals, from which various molecular properties can be deduced. These not only include charge distribution, electronic configuration, geometry, and spatial and energy characteristics of orbitals of the molecule under investigation; one can also obtain parameters of radicals (such as stability, bond length, ionization potential, and electronic excitation energy) that differ from the molecule under investigation in that the nuclear charge of one atom is one unit higher.
Từ khóa
Tài liệu tham khảo
Magnusson T., 1939, Nova Acta Regiae Soc. Sci. Upsal., 11, 3
Siegbahn K., 1967, Nova Acta Regiac Soc. Sci. Upsal., 20, 2
Flügge S., 1957, Handbuch der Physik
Samson J. A. R., 1967, Techniques of Vacuum Ultraviolet Spectroscopy
Lukirski A. P., 1961, Izv. Akad. Nauk SSSR, Ser. Viz., 25, 913
Lukirski A. P., 1965, Opt. Spektrosk., 19, 800
Haensel R., 1967, Z. Angew. Phys., 23, 276
G. V.MarrandI. H.Munro: Proceedings of she International Symposium for Synchrotron Radiation Users Daresbury Nuclear Physics Laboratory 1973.
Schäfer H. L., 1967, Einführung in die Ligandenfeldtheorie
Griffith J. S., 1961, The Theory of Transition‐Metal Ions
Condon E. U., 1935, The Theory of Atomic Spectra
Slater J. C., 1960, Quantum Theory of Atomic Structure
Jorgensen C. G., 1971, Modern Aspects of Ligand Field Theory
Herzberg G., 1950, Molecular Spectra and Molecular Structure
In argon thens‐Rydberg levels are accidently almost identical with the (n—2)d levels (forn≥5) so that the respective peaks strictly speaking correspond to two transitions each: 2p→ns and 2p→(n—2)d.
M.Nakamuraet al. 3rd Int. Conf. VUV Rad. Phys. page 1 p Al. Tokio1971.
W. H. E.Schwarz to be published.
K.Vasudevan personal communication.
W. H. E.Schwarz unpublished results.
Vinagradow A. S., 1971, Opt. Spektrosk., 31, 542
Fomitschev V. A., 1970, Zh. Strukt. Khim., 1, 676
Simkina T. M., 1971, J. Physique, 32, C4‐3
Vinogradov A. S., 1971, Opt. Spektrosk., 31, 685
Haensel R., Verh. Deut. Phys. Ges., 1973, 5
Fomitschev V. A., 1967, Fis. Tverd. Tela, 9, 3167
Fomitschev V. A., 1970, Zh. Strukt. Khim., 11, 875
Simkina T. M., 1972, Isv. Akad. Nauk SSSR, 36, 248
R. E.LaVilla unpublished (see ref. [4]).
Siegbahn K., 1969, ESCA Applied to Free Molecules
Vinogradov A. S., 1971, Zh. Strukt. Khim., 12, 899
Simkina T. M., 1966, Dokl. Akad. Nauk SSSR, 169, 1304
S. E.Karlsson K.Siegbahn andN.Bartlett personal communication.
The first band at 529eV can be interpreted neither as1Σ+→ (Ols‐2π*)3 1Π nor as1Σ+→(Ols‐6σ*)1Σ+of CO according to energy and intensity considerations. It is probably an artefact of the measurement (scattered light of another order H20?).
G.Herzberg unpublished results;
Lifshitz C., 1965, J. Phys. Chem., 69, 373
McIamud E., 1972, Chem. Phys. Lett., 15, 591
U.Nielsen R.Hoensel andW. H. E.Schwarz J. Chem. Phys. in press.
Sadowski A. P., 1970, Teor. Eksp. Khim., 6, 502
Nefedov W. I., 1970, Zh. Strukt. Khim., 11, 292
Compton R. N., 1970, Advan. Radiat. Chem., 2, 281
C. W.Matthews unpublished.