Work function and surface stability of tungsten-based thermionic electron emission cathodes

APL Materials - Tập 5 Số 11 - 2017
Ryan Jacobs1, Dane Morgan1, John H. Booske2
1Department of Materials Science and Engineering, University of Wisconsin-Madison 1 , Madison, Wisconsin 53706, USA
2Department of Electrical and Computer Engineering, University of Wisconsin-Madison 2 , Madison, Wisconsin 53706, USA

Tóm tắt

Materials that exhibit a low work function and therefore easily emit electrons into vacuum form the basis of electronic devices used in applications ranging from satellite communications to thermionic energy conversion. W–Ba–O is the canonical materials system that functions as the thermionic electron emitter commercially used in a range of high-power electron devices. However, the work functions, surface stability, and kinetic characteristics of a polycrystalline W emitter surface are still not well understood or characterized. In this study, we examined the work function and surface stability of the eight lowest index surfaces of the W–Ba–O system using density functional theory methods. We found that under the typical thermionic cathode operating conditions of high temperature and low oxygen partial pressure, the most stable surface adsorbates are Ba–O species with compositions in the range of Ba0.125O–Ba0.25O per surface W atom, with O passivating all dangling W bonds and Ba creating work function-lowering surface dipoles. Wulff construction analysis reveals that the presence of O and Ba significantly alters the surface energetics and changes the proportions of surface facets present under equilibrium conditions. Analysis of previously published data on W sintering kinetics suggests that fine W particles in the size range of 100-500 nm may be at or near equilibrium during cathode synthesis and thus may exhibit surface orientation fractions well described by the calculated Wulff construction.

Từ khóa


Tài liệu tham khảo

1994, Principles of Traveling Wave Tubes

2008, Phys. Plasmas, 15, 055502, 10.1063/1.2838240

2011, IEEE Trans. Terahertz Sci. Technol., 1, 54, 10.1109/tthz.2011.2151610

2010, Nat. Mater., 9, 762, 10.1038/nmat2814

2013, Nat. Commun., 4, 1576, 10.1038/ncomms2577

2012, Appl. Phys. Lett., 100, 173904, 10.1063/1.4707379

2013, Phys. Chem. Chem. Phys., 15, 14442, 10.1039/c3cp52895b

2011, J. Vac. Sci. Technol., B, 29, 04E106, 10.1116/1.3609251

2005, Appl. Surf. Sci., 251, 106, 10.1016/j.apsusc.2005.03.196

2009, IEEE Trans. Electron Devices, 56, 776, 10.1109/ted.2009.2015619

1997, Appl. Surf. Sci., 111, 11, 10.1016/s0169-4332(96)00698-8

2011, J. Vac. Sci. Technol., B, 29, 04E102, 10.1116/1.3589442

2014, J. Phys. Chem. C, 118, 19742, 10.1021/jp503320r

2012, Phys. Rev. B, 86, 054106, 10.1103/physrevb.86.054106

2005, Surf. Coat. Technol., 198, 266, 10.1016/j.surfcoat.2004.10.079

2007, J. Vac. Sci. Technol., B, 25, 817, 10.1116/1.2723754

2012, J. Mater. Chem., 22, 17071, 10.1039/c2jm32483k

2016, Adv. Funct. Mater., 26, 5471, 10.1002/adfm.201600243

2016, Phys. Rev. B, 93, 235116, 10.1103/physrevb.93.235116

2017, Phys. Rev. X, 7, 011023, 10.1103/physrevx.7.011023

2017, J. Phys.: Condens. Matter, 29, 315702, 10.1088/1361-648x/aa79bd

2015, Nano Lett., 15, 6475, 10.1021/acs.nanolett.5b01916

2017, Nanoscale, 9, 7016, 10.1039/c7nr01601h

1977, J. Appl. Phys., 48, 4729, 10.1063/1.323539

1976, J. Appl. Phys., 47, 5272, 10.1063/1.322602

1979, Appl. Surf. Sci., 2, 258, 10.1016/0378-5963(79)90037-0

1983, Appl. Surf. Sci., 16, 139, 10.1016/0378-5963(83)90064-8

1949, Rev. Mod. Phys., 21, 185, 10.1103/revmodphys.21.185

1971, Phys. Rev. B, 4, 4234, 10.1103/physrevb.4.4234

1968, J. Chem. Phys., 48, 2421, 10.1063/1.1669464

1985, Phys. Rev. B, 31, 4911, 10.1103/physrevb.31.4911

2007, Appl. Phys. Lett., 91, 144102, 10.1063/1.2794762

2010, J. Appl. Phys., 107, 044903, 10.1063/1.3304923

1994, Phys. Rev. Lett., 73, 1664, 10.1103/physrevlett.73.1664

1979, Phys. Rev. B, 20, 624, 10.1103/physrevb.20.624

1998, Phys. Rev. Lett., 81, 429, 10.1103/physrevlett.81.429

2012, Phys. Status Solidi A, 209, 1697, 10.1002/pssa.201200027

2012, Phys. Rev. B, 86, 155301, 10.1103/physrevb.86.155301

1978, Surf. Sci., 78, 648, 10.1016/0039-6028(78)90238-8

1971, J. Vac. Sci. Technol., 8, 39, 10.1116/1.1316348

2010, Phys. Rev. B, 81, 054207, 10.1103/physrevb.81.054207

2009, Appl. Phys. Lett., 94, 184102, 10.1063/1.3129193

2009, IEEE Trans. Electron Devices, 56, 794, 10.1109/ted.2009.2015410

2017, J. Vac. Sci. Technol., A, 35, 021601, 10.1116/1.4972857

2014, J. Phys. Chem. C, 118, 11303, 10.1021/jp4120578

1996, Phys. Rev. B, 54, 11169, 10.1103/physrevb.54.11169

1996, Phys. Rev. Lett., 77, 3865, 10.1103/physrevlett.77.3865

1999, Phys. Rev. B, 59, 1758, 10.1103/physrevb.59.1758

1951, Phys. Rev., 82, 87, 10.1103/physrev.82.87

2013, Comput. Mater. Sci., 68, 314, 10.1016/j.commatsci.2012.10.028

2016, J. Phys. Chem. Lett., 7, 4483, 10.1021/acs.jpclett.6b02174

2013, APL Mater., 1, 011002, 10.1063/1.4812323

1976, Phys. Rev. B, 13, 5188, 10.1103/physrevb.13.5188

2016, Sci. Data, 3, 160080, 10.1038/sdata.2016.80

1998, Surf. Sci., 411, 186, 10.1016/s0039-6028(98)00363-x

2011, J. Appl. Crystallogr., 44, 1272, 10.1107/s0021889811038970

2003, Appl. Surf. Sci., 215, 38, 10.1016/s0169-4332(03)00322-2

2007, IEEE Trans. Electron Devices, 54, 1061, 10.1109/ted.2007.894602

2014, IEEE Trans. Electron Devices, 61, 1754, 10.1109/ted.2014.2309279

2011, IEEE Trans. Electron Devices, 58, 1221, 10.1109/ted.2011.2109723

1986, Appl. Surf. Sci., 26, 173, 10.1016/0169-4332(86)90004-8

2008, J. Phys. Chem. Solids, 69, 2103, 10.1016/j.jpcs.2008.03.013

1963, J. Less-Common Met., 5, 140, 10.1016/0022-5088(63)90007-9

1976, Metall. Trans. A, 7, 1873, 10.1007/bf02659818

1964, J. Appl. Phys., 35, 215, 10.1063/1.1713072