Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các bài toán từ liên quan đến việc sử dụng các chiến lược chức năng của học sinh lớp 4
Tóm tắt
Bài viết này thảo luận về các đặc điểm của các bài toán từ liên quan đến việc học sinh sử dụng các chiến lược chức năng và khả năng biểu diễn sự tổng quát của các hàm số. Trong bối cảnh của một dự án nghiên cứu rộng hơn nhằm khám phá và thúc đẩy tư duy chức năng trong số học sinh tiểu học, hai mươi lăm học sinh lớp 4 (9-10 tuổi) đã được yêu cầu xác định các mối quan hệ chức năng trong năm bài toán liên quan đến các đại lượng cụ thể hoặc không xác định. Các phản hồi của họ đối với một số câu hỏi liên quan đến sự tổng quát của các mối quan hệ trong các bài toán đã được phân tích và liên kết với các đặc điểm của các bài toán đó. Loại hình biểu diễn sự tổng quát được sử dụng (bằng lời, dạng chung, hoặc biểu tượng) cũng đã được xác định. Kết quả của chúng tôi cho thấy học sinh lớp 4 đã thể hiện tiềm năng tư duy chức năng trước khi nhận được hướng dẫn về các biến số và ký hiệu của chúng. Việc thúc đẩy tư duy này hiệu quả nhất khi họ làm việc với các bài toán từ liên quan rõ ràng đến một hàm số cộng thêm. Khi học sinh tổng quát các mối quan hệ chức năng, họ đã biểu diễn chúng bằng lời nói hoặc với các ví dụ chung. Không có học sinh nào sử dụng biểu diễn bằng ký hiệu. Tính độc đáo của nghiên cứu này nằm ở việc mô tả các đặc điểm cụ thể của các bài toán từ có liên quan đến tư duy chức năng; thông tin này sẽ hữu ích cho cả giáo viên và các nhà thiết kế chương trình giảng dạy. Việc xác định những đặc điểm này có thể giúp xây dựng và đề xuất các nhiệm vụ khuyến khích học sinh sử dụng nhiều hơn một và các chiến lược tinh vi hơn.
Từ khóa
#tư duy chức năng #bài toán từ #chiến lược chức năng #giáo dục tiểu học #lớp 4Tài liệu tham khảo
Ayala-Altamirano, C., & Molina, M. (2019a). Meanings Attributed to Letters in Functional Contexts by Primary School Students. International Journal of Science and Mathematics Education. https://doi.org/10.1007/s10763-019-10012-5.
Ayala-Altamirano, C., & Molina, M. (2019b). Justificación y expresión de la generalización de una relación funcional por estudiantes de cuarto de primaria [Justification and expression of the generalization of a functional relationship by fourth grade students]. In J. M. Marbán, M. Arce, A. Maroto, J. M. Muñoz-Escolano y Á. Alsina (Eds.), Investigación en Educación Matemática XXIII (pp. 183-192). Valladolid: SEIEM.
Bednarz, N. (2001). A problem-solving approach to algebra: accounting for the reasonings and notations developed by students. In H. Chick, K. Stacey, J. Vincent, & J. Vincent (Eds.), The future of the teaching and learning of algebra: Proceedings of the 12th ICMI Study Conference (Vol. 1, pp. 69–78). Victoria: University of Melbourne.
Bills, L., & Rowland, T. (1999). Examples, generalisation and proof. Research in Mathematics Education, 1(1), 103–116. https://doi.org/10.1080/14794809909461549.
Blanton, M. L. (2008). Algebra in elementary classrooms: transforming thinking, transforming practice. Portsmouth: Heinemann.
Blanton, M., & Kaput, J. (2004). Elementary grades students’ capacity for functional thinking. In Proceedings of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 135–142). Bergen: Bergen University College.
Blanton, M. L., & Kaput, J. J. (2011). Functional thinking as a route into algebra in the elementary grades. In J. Cai & E. Knuth (Eds.), Early algebraization, advances in mathematics education: a global dialogue from multiple perspective (pp. 5–23). Berlinm Heidelberg: Springer. https://doi.org/10.1007/978-3-642-17735-4_2.
Blanton, M. L., Brizuela, B. M., Gardiner, A. M., Sawrey, K. & Newman-Owens, A. (2015). A Learning Trajectory in 6-Year-Olds’ Thinking About Generalizing Functional Relationships. Journal for Research in Mathematics Education, 46(5), 511–558. https://doi.org/10.5951/jresematheduc.46.5.0511.
Blanton, M. L., Brizuela, B. M., Gardiner, A. M., Sawrey, K., & Newman-Owens, A. (2017). A progression in first-grade children’s thinking about variable and variable notation in functional relationships. Educational Studies in Mathematics, 95(2), 181–202. https://doi.org/10.1007/s10649-016-9745-0.
Blanton, M., Levi, L., Crites, T., Dougherty, B., & Zbiek, R. M. (2011). Developing essential understanding of algebraic thinking for teaching mathematics in grades 3–5. In R. M. Zbiek (Ed.), Essential understanding series. National Council of Teachers of Mathematics: Reston.
Brizuela, B. M. & Earnest, D. (2008). Multiple notational systems and algebraic understandings: The case of the “best deal” problem. In J. Kaput, D. Carraher & M. Blanton (Eds.), Algebra in the early grades (pp. 273–301). Mahwah: Lawrence Erlbaum/Taylor & Francis Group; Reston: National Council of Teachers of Mathematics.
Brizuela, B. M., Blanton, M., Sawrey, K., Newman-Owens, A., & Gardiner, A. (2015). Children’s use of variables and variable notation to represent their algebraic ideas. Mathematical Thinking and Learning, 17, 1–30. https://doi.org/10.1080/10986065.2015.981939.
Cai, J., & Howson, A. G. (2012). Toward an international mathematics curriculum. In M. A. Clements, A. Bishop, C. Keitel, J. Kilpatrick, & K. S. F. Leung (Eds.), Third international handbook of mathematics education research (pp. 949–974). Dordrecht: Springer. https://doi.org/10.1007/978-1-4614-4684-2_29.
Cañadas, M. C., & Castro, E. (2007). A proposal of categorisation for analysing inductive reasoning. PNA, 1(2), 67–78.
Cañadas, M. C., & Fuentes, S. (2015). Pensamiento funcional de estudiantes de primero de educación primaria: Un estudio exploratorio [Functional thinking in first-year primary teacher students: an exploratory study]. In C. Fernández, M. Molina, & N. Planas (Eds.), Investigación en Educación Matemática XIX (pp. 211–220). Alicante: SEIEM.
Cañadas, M. C., Brizuela, B. M., & Blanton, M. (2016). Second graders articulating ideas about linear functional relationships. The Journal of Mathematical Behavior, 41, 87–103. https://doi.org/10.1016/j.jmathb.2015.10.004.
Cañadas, M. C., Castro, E., & Castro, E. (2008). Patrones, generalización y estrategias inductivas de estudiantes de 3° y 4° de educación secundaria obligatoria en el problema de las baldosas [Patterns, Generalization and Inductive Strategies of Secondary Students Working on the Tiles Problem]. PNA, 2(3), 137–151.
Carraher, D. W., & Schliemann, A. (2007). Early algebra and algebraic reasoning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 669–705). Greenwich: Information Age Publishing.
Carraher, D. W., Martinez, M. V., & Schliemann, A. D. (2008). Early algebra and mathematical generalization. ZDM, 40(1), 3–22. https://doi.org/10.1007/s11858-007-0067-7.
Earnest, D. (2014). Exploring functions in elementary school: leveraging the representational context. In K. Karp (Ed.), Annual perspectives in mathematics education: using research to improve instruction (pp. 171–179). Reston: NCTM.
Kaput, J. J. (2008). What is algebra? What is algebraic reasoning? In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early gNew Yorkrades (pp. 5–17). Lawrence Erlbaum Associates.
Kieran, C. (2006). Research on the learning and teaching of algebra: a broadening of sources of meaning. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the pscyhology of mathematics education: past, present and future (pp. 11–49). Rotterdam: Sense Publishers.
Kieran, C., Pang, J., Schifter, D., & Ng, S. F. (2016). Early algebra. Research into its nature, its learning, its teaching. ICME-13 Topical Surveys. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-32258-2.
Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. Chicago: University of Chicago Press.
Lannin, J., Barker, D., & Townsend, B. (2006). Algebraic generalisation strategies: factors influencing student strategy selection. Mathematics Education Research Journal, 18(3), 3–28. https://doi.org/10.1007/BF03217440.
Larson, R., & Hostetler, R. (2008). Precálculo (7th ed.). México: Reverté Ediciones.
Larsson, K., & Pettersson, K. (2015). Discerning multiplicative and additive reasoning in co-variation problems. In X. Sun, B. Kaur, & J. Novotná (Eds.), Proceedings of the International Commission of Mathematical Instruction (ICMI) Study 23 Conferenceon the Primary Mathematics Study on Whole Numbers (pp. 559–566). Macau: University of Macau.
Lee, K., Ng, S. F., & Bull, R. (2018). Learning and solving algebra word problems: the roles of relational skills, arithmetic, and executive functioning. Developmental Psychology, 54(9), 1758–1772. https://doi.org/10.1037/dev0000561.
MacGregor, M., & Stacey, K. (1995). The effect of different approaches to algebra on students’ perception of functional relationships. Mathematics Education Research Journal, 7(1), 69–85. https://doi.org/10.1007/BF03217276.
Martí, E., & Pozo, J. I. (2000). Más allá de las representaciones mentales: La adquisición de los sistemas externos de representación [Beyond mental representations: The acquisition of external systems of representation]. Infancia y Aprendizaje, 90, 11–30. https://doi.org/10.1174/021037000760087946.
Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching (pp. 65–86). Dordrecht: Kluwer.
Mason, J. (2008). Making use of children’s powers to produce algebraic thinking. In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 57–94). New York: Lawrence Erlbaum Associates.
Mason, J. (2018). Structuring structural awareness: a commentary on chap. 13. In M. G. B. Bussi & X. H. Sun (Eds.), Building the foundation: whole numbers in the primary grades (pp. 325–340). Cham: Springer International Publishing.
Mason, J., & Pimm, D. (1984). Generic examples: seeing the general in the particular. Educational Studies in Mathematics, 15(3), 277–289. https://doi.org/10.1007/BF00312078.
McEldoon, K. L., & Rittle-Johnson, B. (2010). Assessing elementary students’ functional thinking skills: the case of function tables. In P. Brosnan, D. Erchick, & L. Flevares (Eds.), Proceedings of the Thirty Second Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education: Optimizing Student Understanding in Mathematics (p. 202). Columbus: ERIC Clearinghouse for Science, Mathematics, and Environmental Educationn.
Merino, E., Cañadas, M., & Molina, M. (2013). Uso de representaciones y patrones por alumnos de quinto de Educación Primaria en una tarea de generalización [Use of representations and patterns by fifth grade primary school students in a generalization task]. Edma 0-6: Educación Matemática en la Infancia, 2(1), 24–40.
Ministerio de Educación, Cultura y Deporte. (2014). Real Decreto 126/2014 de 28 de febrero, por el que se establece el currículo básico de la Educación Primaria [Royal Decree 126/2014 of February 28, which establishes the basic curriculum of primary education]. BOE, 52, 19349–19420.
Molina, M., Ambrose, R., & del Rio, A. (2018). First encounter with variables by first and third grade Spanish students. In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds. ICME-13 monographs (pp. 261–280). Cham: Springer. https://doi.org/10.1007/978-3-319-68351-5_11.
Morales, R., Cañadas, M., Brizuela, B., & Gómez, P. (2018). Relaciones funcionales y estrategias de alumnos de primero de Educación Primaria en un contexto funcional [Functional relationships and strategies of first graders in a functional context]. Enseñanza de las Ciencias, 36(3), 59–78. https://doi.org/10.5565/rev/ensciencias.2472.
Moss, J., & Beatty, R. (2006). Knowledge building and knowledge forum: grade 4 students collaborate to solve linear generalizing problems. In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 193–199). Prague: PME.
Moss, J., & McNab, S. L. (2011). An approach to geometric and numeric patterning that fosters second grade students’ reasoning and generalizing about functions and co- variation. In J. Cai & E. Knuth (Eds.), Early algebraization. A global dialogue from multiple perspectives (pp. 277–301). Berlin: Springer. https://doi.org/10.1007/978-3-642-17735-4_16.
Mulligan, J., & Mitchelmore, M. (2009). Awareness of pattern and structure in early mathematical development. Mathematics Education Research Journal, 21(2), 33–49. https://doi.org/10.1007/BF03217544.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston: Author.
Pang, J., & Kim, J. (2018). Characteristics of Korean students’ early algebraic thinking: a generalized arithmetic perspective. In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds. ICME-13 monographs (pp. 141–165). Cham: Springer. https://doi.org/10.1007/978-3-319-68351-5_6.
Pinto, E., & Cañadas, M. C. (2018). Generalización y razonamiento inductivo en una estudiante de cuarto de primaria. Un estudio de caso desde el pensamiento funcional [Generalization and inductive reasoning by a fourth grader. A case study from the functional thinking approach]. In L. J. Rodríguez-Muñiz, L. Muñiz-Rodríguez, A. Aguilar-González, P. Alonso, F. J. García García, & A. Bruno (Eds.), Investigación en Educación Matemática XXII (pp. 457–466). Gijón: SEIEM.
Pinto, E., Cañadas, M. C., Moreno, A., & Castro, E. (2016). Relaciones funcionales que evidencian estudiantes de tercero de educación primaria y sistemas de representación que usan [Functional relationships evidenced by third graders and the representation they systems used]. In C. Fernández, J. L. González, F. J. Ruiz, J. A. Macías, A. Jiménez, M. T. Sánchez, P. Hernández, T. Fernández, & A. Berciano (Eds.), Investigación en Educación Matemática XX (pp. 417–426). Málaga: SEIEM.
Polya, G. (1945). How to solve it. Princeton: Princeton University Press.
Radford, L. (2006). Algebraic thinking and the generalization of patterns: a semiotic perspective. In J. L. C. S. Alatorre, M. Sáiz, & A. Méndez (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, North American Chapter (Vol. 1, pp. 2–21). Mérida: Universidad Pedagógica Nacional.
Radford, L. (2010). Layers of generality and types of generalization in pattern activities. PNA, 4(2), 37–62.
Radford, L. (2011). Grade 2 students’ non-symbolic algebraic thinking. In J. Cai & E. Knuth (Eds.), Early algebraization: a global dialogue from multiple perspectives. Advances in Mathematics Education Monograph Series (pp. 303–322). Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-642-17735-4_17.
Radford, L. (2013). En torno a tres problemas de la generalización [Concerning three problems of generalization]. In L. Rico, M. C. Cañadas, J. Gutiérrez, M. Molina, & I. Segovia (Eds.), Investigación en didáctica de la matemática. Homenaje a Encarnación Castro (pp. 3–12). Editorial Comares: Granada.
Radford, L. (2018). The emergence of symbolic algebraic thinking in primary school. In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds. ICME-13 monographs (pp. 3–25). Cham: Springer. https://doi.org/10.1007/978-3-319-68351-5_1.
Rico, L. (2007). La competencia matemática en PISA [Mathematical competence in PISA]. PNA, 1(2), 47–66.
Rico, L., Castro, E., Castro, E., Coriat, M., Marín, A., & Puig, L. (1997). La educación matemática en la enseñanza secundaria [Mathematical education in secondary education]. Barcelona: Editorial Horsori.
Smith, E. (2003). Stasis and change: Integrating patterns, functions, and algebra throughout the K-12 curriculum. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 136–150). Reston: NCTM.
Smith, E. (2008). Representational thinking as a framework for introducing functions in the elementary curriculum. In J. J. Kaput, M. L. Blanton, & D. W. Carraher (Eds.), Algebra in the early grades (pp. 133–160). New York: Lawrence Erlbaum Associates.
Stacey, K. (1989). Finding and using patterns in linear generalising problems. Educational Studies in Mathematics, 20(2), 147–164. https://doi.org/10.1007/BF00579460.
Stephens, A. C., Isler, I., Marum, T., Blanton, M. L., Knuth, E. J., & Gardiner, A. M. (2012). From recursive pattern to correspondence rule: developing students’ abilities to engage in functional thinking. In L. R. Van Zoest, J.-J. Lo, & J. L. Kratky (Eds.), Proceedings of the 34th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 821–828). Kalamazoo: Western Michigan University.
Stephens, A., Blanton, M., Knuth, E., Isler, I., & Gardiner, A. M. (2015). Just say yes to early algebra! Teaching Children Mathematics, 22(2), 92–101. https://doi.org/10.5951/teacchilmath.22.2.0092.
Stylianides, A. J. (2016). Proving in the elementary mathematics classroom. Oxford: Oxford University Press.
Ureña, J., Ramírez-Úcles, R., & Molina, M. (2019). Representations of the generalization of a functional relationship and the relation with the interviewer’s mediation. Infancia y Aprendizaje, 42(3), 570–614. https://doi.org/10.1080/02103702.2019.1604020.
Vergnaud, G. (2009). The theory of conceptual fields. Human Development, 52(2), 83–94. https://doi.org/10.1159/000202727.
Vinner, S., & Dreyfus, T. (1989). Images and definitions for the concept of function. Journal for Research in Mathematics Education, 20(4), 356–366. https://doi.org/10.2307/749441.
Warren, E. (2005). Young children’s ability to generalise the pattern rule for growing patterns. In H. Chick & J. Vincent (Eds.), Proceedings of the 29th conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 305–312). Melbourne: PME.
Warren, E., & Cooper, T. (2008). Generalising the pattern rule for visual growth patterns: actions that support 8-year olds’ thinking. Educational Studies in Mathematics, 67(2), 171–185. https://doi.org/10.1007/s10649-007-9092-2.
Warren, E., Trigueros, M., & Ursini, S. (2016). Research on the learning and teaching of algebra. In A. Gutiérrez, G. C. Leder, & P. Boero (Eds.), The second handbook of research on the psychology of mathematics education: the journey continues (pp. 73–108). Rotterdam: SensePublishers. https://doi.org/10.1007/978-94-6300-561-6_3.
Zapatera, A. (2018). Cómo Alumnos De Educación Primaria Resuelven Problemas De Generalización De Patrones. Una Trayectoria De Aprendizaje. [How Primary Education students solve problems of generalization of patterns: a learning trajectory]. Revista Latinoamericana de Investigación en Matemática Educativa, 21(1), 87–114. https://doi.org/10.12802/relime.18.2114.