Wild rice (O. latifolia) from natural ecosystems in the Pantanal region of Brazil: Host to Fusarium incarnatum-equiseti species complex and highly contaminated by zearalenone

International Journal of Food Microbiology - Tập 345 - Trang 109127 - 2021
Sabina Moser Tralamazza1, Karim Cristina Piacentini1, Geovana Dagostim Savi2, Lorena Carnielli-Queiroz1, Lívia de Carvalho Fontes1, Camila Siedlarczyk Martins3, Benedito Corrêa1, Liliana Oliveira Rocha3
1Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
2University of Southern Santa Catarina (UNESC), Scientific and Technological Park, Santa Catarina, Brazil
3Department of Food Science, Food Engineering Faculty, University of Campinas, Campinas, Brazil

Tài liệu tham khảo

Almeida, 2012, Co-occurrence of aflatoxins B1, B2, G1 and G2, ochratoxin a, zearalenone, deoxynivalenol, and citreoviridin in rice in Brazil, Food Addit. Contam. A, 29, 694, 10.1080/19440049.2011.651750 Angeles-Shim, 2020, A novel locus from the wild allotetraploid rice species Oryza latifolia Desv. confers bacterial blight (Xanthomonas oryzae pv. oryzae) resistance in rice (O. sativa), PLoS One, 15, e0229155, 10.1371/journal.pone.0229155 Aoki, 2012, Systematics, phylogeny and trichothecene mycotoxin potential of Fusarium head blight cereal pathogens, Mycotoxins, 62, 91, 10.2520/myco.62.91 Avila, 2019, Fusarium incarnatum-equiseti species complex associated with Brazilian rice: Phylogeny, morphology and toxigenic potential, Int. J. Food Microbiol.., 306, 1, 10.1016/j.ijfoodmicro.2019.108267 2016, Dynamics of the Pantanal wetland in South America. Bertazzoni, 2011, Aspectos da biologia e fenologia de Oryza latifolia desv. (poaceae) no pantanal sul-mato-grossense. Acta Bot, Brasilica, 25, 476, 10.1590/S0102-33062011000200023 Bortolotto, 2017, A knowledge network to promote the use and valorization of wild food plants in the Pantanal and Cerrado, Brazil. Reg. Environ. Chang., 17, 1329, 10.1007/s10113-016-1088-y Brown, 2013 Castellá, 2014, Phylogenetic diversity of Fusarium incarnatum-equiseti species complex isolated from Spanish wheat, Antonie Van Leeuwenhoek, 106, 309, 10.1007/s10482-014-0200-x Chen, 2019, Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management, Annu. Rev. Phytopathol., 57, 15, 10.1146/annurev-phyto-082718-100318 Del Ponte, 2015, Regional and field-specific factors affect the composition of Fusarium head blight pathogens in subtropical no-till wheat agroecosystem of Brazil, Phytopathology., 105, 246, 10.1094/PHYTO-04-14-0102-R Dong, 2020, Gramineous weeds near paddy fields are alternative hosts for the Fusarium graminearum species complex that causes fusarium head blight in rice, Plant Pathol., 69, 433, 10.1111/ppa.13143 European Commission, 2006, Laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs, Off. J. Eur. Union, 1 European Commission, 2006, Setting maximum levels for certain contaminants in foodstuffs, Off. J. Eur. Union, 5 Frizzell, 2011, Endocrine disrupting effects of zearalenone, alpha and beta-zearalenol at the level of nuclear receptor binding and steroidogenesis, Toxicol. Lett., 206, 210, 10.1016/j.toxlet.2011.07.015 Golge, 2020, Occurrence of deoxynivalenol and zearalenone in cereals and cereal products from Turkey, Food Control, 110, 106982, 10.1016/j.foodcont.2019.106982 Gomes, 2015, Species composition, toxigenic potential and pathogenicity of Fusarium graminearum species complex isolates from southern Brazilian rice, Plant Pathol., 64, 980, 10.1111/ppa.12332 Gonçalves, 2019, Pre- and postharvest strategies to minimize mycotoxin contamination in the rice food chain, Compr. Rev. Food Sci. Food Saf., 18, 441, 10.1111/1541-4337.12420 Goswami, 2005, Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice, Phytopathology, 95, 1397, 10.1094/PHYTO-95-1397 Goswami, 2008, Host range and mycotoxin production by Fusarium equiseti isolates originating from ginseng fields, Can. J. Plant Pathol., 30, 155, 10.1080/07060660809507506 Gupta, 2015, Bakanae of rice -an emerging disease in Asia, J. Anim. Plant Sci., 25, 1499 Katsurayama, 2020, Fungal communities in rice cultivated in different Brazilian agroclimatic zones: from field to market, Food Microbiol., 87, 103378, 10.1016/j.fm.2019.103378 Kosiak, 2005, Morphological, chemical and molecular differentiation of Fusarium equiseti isolated from Norwegian cereals, Int. J. Food Microbiol., 99, 195, 10.1016/j.ijfoodmicro.2004.08.015 Kowalska, 2016, Zearalenone as an endocrine disruptor in humans, Environ. Toxicol. Pharmacol., 48, 141, 10.1016/j.etap.2016.10.015 Laurence, 2014, Genealogical concordance phylogenetic species recognition in the Fusarium oxysporum species complex, Fungal Biology, 118, 374, 10.1016/j.funbio.2014.02.002 Laurence, 2015, Six novel species of Fusarium from natural ecosystems in Australia, Fungal Divers. Leslie, 2006 Montalvo, 2020, Consumption of wild rice (Oryza latifolia) by free-ranging jaguars, pumas, and ocelots (Carnivora-Felidae) in northwestern Costa Rica, Food Webs, 22, 10.1016/j.fooweb.2019.e00138 Moreira, 2020, Nationwide survey reveals high diversity of Fusarium species and related mycotoxins in Brazilian rice: 2014 and 2015 harvests, Food Control, 113, 107171, 10.1016/j.foodcont.2020.107171 Morillo, 2011, Mycobiota associated with grains of rice harvested in cycles of drought and rainfall in Guárico State, Venezuela, Fitopatología Venezolana, 24, 42 Multani, 2003, Alien gene introgression and development of monosomic alien addition lines from Oryza latifolia, Theor Appl Genet, 107, 395, 10.1007/s00122-003-1214-3 O’Donnell, 1998, Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies, Proc. Natl. Acad. Sci. U. S. A., 95, 2044, 10.1073/pnas.95.5.2044 O’Donnell, 2004, Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade, Fungal Genet. Biol., 41, 600, 10.1016/j.fgb.2004.03.003 O’Donnell, 2009, Novel multilocus sequence typing scheme reveals high genetic diversity of human pathogenic members of the Fusarium incarnatum, F. equiseti and F. chlamydosporum species complexes within the United States. J. Clin. Microbiol., 47, 3851 O’Donnell, 2012, Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via FUSARIUM-ID and Fusarium MLST, Mycologia, 104, 427, 10.3852/11-179 Ok, 2014, Mycobiota and natural occurrence of aflatoxin, deoxynivalenol, nivalenol and zearalenone in rice freshly harvested in South Korea, Food Control, 37, 284, 10.1016/j.foodcont.2013.09.020 Pak, 2017, Reservoir of cultivated rice pathogens in wild rice in Australia, Eur. J. Plant Pathol., 147, 295, 10.1007/s10658-016-1002-y Petrovic, 2013, Diversity and fertility of Fusarium sacchari from wild rice (Oryza australiensis) in northern Australia, and pathogenicity tests with wild rice, rice, sorghum and maize, Eur. J. Plant Pathol., 136, 773, 10.1007/s10658-013-0206-7 Pitt, 2009 Posada, 2008, jModelTest: phylogenetic model averaging, Mol. Bio. Evol., 25, 1253, 10.1093/molbev/msn083 Pott, 2015 Pott, 2000 Qiu, 2014, Genetic relationships, carbendazim sensitivity and mycotoxin production of the Fusarium graminearum populations from maize, wheat and rice in eastern China, Toxins, 6, 2291, 10.3390/toxins6082291 Ramdial, 2017, Phylogeny and haplotype analysis of fungi within the Fusarium incarnatum-equiseti species complex, Phytopathology, 16, 109, 10.1094/PHYTO-05-16-0209-R Savi, 2013, Antifungal properties of zinc-compounds against toxigenic fungi and mycotoxin, Int. J. Food Sci. Technol., 48, 1834, 10.1111/ijfs.12158 Savi, 2013, Effect of zinc compounds on Fusarium verticillioides growth, hyphae alterations, conidia, and fumonisin production, J. Sci. Food Agric., 93, 3395, 10.1002/jsfa.6271 Savi, 2018, Incidence of toxigenic fungi and zearalenone in rice grains from Brazil, Int. Food Microbiol., 270, 5, 10.1016/j.ijfoodmicro.2018.02.004 Scott, 2012, Recent research on fumonisins: a review, Food Addit. Contam., 29, 242, 10.1080/19440049.2010.546000 Stukenbrock, 2011, The making of a new pathogen: insights from comparative population genomics of the domesticated wheat pathogen Mycosphaerella graminicola and its wild sister species, Genome Res., 21, 2157, 10.1101/gr.118851.110 Suproniene, 2019, Weed species within cereal crop rotations can serve as alternative hosts for Fusarium graminearum causing Fusarium head blight of wheat, Fungal Ecol., 37, 30, 10.1016/j.funeco.2018.10.002 Swofford, 2002 Tanaka, 2007, Mycotoxins in rice. Int. Food Microbiol., 119, 59, 10.1016/j.ijfoodmicro.2007.08.002 Tateoka, 1962, Taxonomic studies of Oryza I, O. latifolia Complex. Bot. Mag. Tokyo, 75, 418, 10.15281/jplantres1887.75.418 Thompson, 1994, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acod Res, 22, 4673, 10.1093/nar/22.22.4673 Thrane, 1989, 199 Villani, 2016, A polyphasic approach for characterization of a collection of cereal isolates of the Fusarium incarnatum-equiseti species complex, Int. J. Food Microbiol., 234, 24, 10.1016/j.ijfoodmicro.2016.06.023 Villani, 2019, Variation in secondary metabolite production potential in the Fusarium incarnatum-equiseti species complex revealed by comparative analysis of 13 genomes, BMC Genomics, 20, 314, 10.1186/s12864-019-5567-7 Wang, 2019, Fusarium incarnatum-equiseti complex from China, Persoonia, 43, 70, 10.3767/persoonia.2019.43.03 White, 1990, Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, In PCR protocols: A guide to methods and applications. New York: Academic Press, 315 Xia, 2019, Numbers to names – restyling the Fusarium incarnatum-equiseti species complex, Persoonia, 43, 186, 10.3767/persoonia.2019.43.05 Yang, 2018, Host and cropping system shape the Fusarium population: 3ADON-producers are ubiquitous in wheat whereas NIV-producers are more prevalent in rice, Toxins, 10, 115, 10.3390/toxins10030115