Wide bandgap tunability in complex transition metal oxides by site-specific substitution

Nature Communications - Tập 3 Số 1
Woo Seok Choi1, Matthew F. Chisholm2, David J. Singh2, Taekjib Choi2, Gerald E. Jellison2, Ho Nyung Lee2
1Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, Tennessee 37831, USA
2Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, USA.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Capasso, F. Band-gap engineering: from physics and materials to new semiconductor devices. Science 235, 172–176 (1987).

Ramirez, A. P. Oxide electronics emerge. Science 315, 1377–1378 (2007).

Takagi, H. & Hwang, H. Y. An emergent change of phase for electronics. Science 327, 1601–1602 (2010).

Kozuka, Y. et al. Two-dimensional normal-state quantum oscillations in a superconducting heterostructure. Nature 462, 487–490 (2009).

Tsukazaki, A. et al. Observation of the fractional quantum Hall effect in an oxide. Nat. Mater. 9, 889–893 (2010).

Lewis, B. G. & Paine, D. C. Applications and processing of transparent conducting oxides. MRS Bull. 25, 22–27 (2000).

Choi, T., Lee, S., Choi, Y. J., Kiryukhin, V. & Cheong, S.- W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3 . Science 324, 63–66 (2009).

Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143–147 (2010).

Yuan, Y. et al. Efficiency enhancement in organic solar cells with ferroelectric polymers. Nat. Mater. 10, 296–302 (2011).

Bennett, J. W., Grinberg, I. & Rappe, A. M. New highly polar semiconductor ferroelectrics through d8 Cation-O vacancy substitution into PbTiO3: a theoretical study. J. Am. Chem. Soc. 130, 17409–17412 (2008).

Huang, H. Solar energy: ferroelectric photovoltaics. Nat. Photon. 4, 134–135 (2010).

Ehara, S. et al. Dielectric properties of Bi4Ti3O12 below the Curie temperature. Jpn. J. Appl. Phys. 20, 877–881 (1981).

Singh, D. J., Seo, S. S. A. & Lee, H. N. Optical properties of ferroelectric Bi4Ti3O12 . Phys. Rev. B 82, 180103 (2010).

Jia, C., Chen, Y. & Zhang, W. F. Optical properties of aluminum-, gallium-, and indium-doped Bi4Ti3O12 thin films. J. Appl. Phys. 105, 113108 (2009).

Rae, A. D., Thompson, J. G., Withers, R. L. & Willis, A. C. Structure refinement of commensurately modulated bismuth titanate, Bi4Ti3O12 . Acta Cryst. B46, 474–487 (1990).

Cummins, S. E. & Cross, L. E. Crystal symmetry, optical properties, and ferroelectric polarization of Bi4Ti3O12 single crystals. Appl. Phys. Lett. 10, 14–16 (1967).

Scott, J. F. Ferroelectric Memories (Springer, 2000).

Shimakawa, Y. et al. Crystal and electronic structures of Bi4−xLaxTi3O12 ferroelectric materials. Appl. Phys. Lett. 79, 2791–2793 (2001).

Park, B. H. et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 401, 682–684 (1999).

Lee, H. N., Hesse, D., Zakharov, N. & Gösele, U. Ferroelectric Bi3.25La0.75Ti3O12 films of uniform a-axis orientation on silicon substrates. Science 296, 2006–2009 (2002).

Arima, T., Tokura, Y. & Torrance, J. B. Variation of optical gaps in perovskite-type 3d transition-metal oxides. Phys. Rev. B 48, 17006 (1993).

Hashimoto, T. & Moriwake, H. Oxygen vacancy formation energy and its effect on spontaneous polarization in Bi4Ti3O12: a first-principles theoretical study. Phys. Rev. B 78, 092106 (2008).

Noguchi, Y., Soga, M., Takahashi, M. & Miyayama, M. Oxygen stability and leakage current mechanism in ferroelectric La-substituted Bi4Ti3O12 single crystals. Jpn. J. Appl. Phys. 44, 6998–7002 (2005).

Lee, H. N. & Hesse, D. Anisotropic ferroelectric properties of epitaxially twinned Bi3.25La0.75Ti3O12 thin films grown with three different orientations. Appl. Phys. Lett. 80, 1040–1042 (2002).

Seo, S. S. A. et al. Multiple conducting carriers generated in LaAlO3/SrTiO3 heterostructures. Appl. Phys. Lett. 95, 082107 (2009).

Lee, H. et al. Dielectric functions and electronic band structure of lead zirconate titanate thin films. J. Appl. Phys. 98, 094108 (2005).

Moret, M. P., Devillers, M. A. C., Worhoff, K. & Larsen, P. K. Optical properties of PbTiO3, PbZrxTi1−xO3, and PbZrO3 films deposited by metalorganic chemical vapor on SrTiO3 . J. Appl. Phys. 92, 468–474 (2002).

Hu, Z. G., Li, Y. W., Yue, F. Y., Zhu, Z. Q. & Chu, J. H. Temperature dependence of optical band gap in ferroelectric Bi3.25La0.75Ti3O12 films determined by ultraviolet transmittance measurements. Appl. Phys. Lett. 91, 221903 (2007).

Haeni, J. H. et al. Epitaxial growth of the first five members of the Srn+1TinO3n+1 Ruddlesden–Popper homologous series. Appl. Phys. Lett. 78, 3292–3294 (2001).

Lee, H. N., Christen, H. M., Chisholm, M. F., Rouleau, C. M. & Lowndes, D. H. Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature 433, 395–399 (2005).

Jellison, G. E. & Modine, F. A. Two-modulator generalized ellipsometry: experiment and calibration. Appl. Opt. 36, 8184–8189 (1997).

Jellison, G. E. & Modine, F. A. Two-modulator generalized ellipsometry: theory. Appl. Opt. 36, 8190–8198 (1997).

Bruggeman, D. A. G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen der Physik 416, 636–664 (1935).