Why rational argument fails the genetic modification (GM) debate
Tóm tắt
Genetic modification (GM) of crops provides a methodology for the agricultural improvements needed to deliver global food security. However, public opposition to GM-food is great. The debate has tended to risk communication, but here we show through study of a large nationally representative sample of British adults that public acceptance of GM-food has social, cultural and affective contexts. Regression models showed that metaphysical beliefs about the sanctity of food and an emotional dislike of GM-food were primary negative determinants, while belief in the value of science and favourable evaluation of the benefits-to-risks of GM-food were secondary positive determinants. Although institutional trust, general knowledge of the GM-food debate and belief in the eco-friendliness of GM-food were all associated with acceptance, their influence was minor. While a belief in the sanctity of food had a direct inverse effect on GM acceptance, belief in the value of science was largely mediated through favourable perception of benefits-to-risks. Furthermore, segmentation analysis demonstrated that anxiety about GM-food had social and cultural antecedents, with white men being least anxious and older vegetarian women being most anxious. Rational argument alone about the risks and benefits of GM-food is unlikely to change public perceptions of GM-technology.
Từ khóa
Tài liệu tham khảo
Ammann, K. (2014). Genomic misconception: A fresh look at the biosafety of transgenic and conventional crops. A plea for a process agnostic regulation. New Biotechnology, 31(1), 1–17.
Baker, G. A., & Burnham, T. A. (2001). Consumer response to genetically modified foods: Market segment analysis and implications of producers and policy makers. Journal of Agricultural and Resource Economics, 26(2), 387–403.
Barker, M. E., McNeir, K., Sameer, S., & Russell, J. (2014). Food, nutrition and slimming messages in British women’s magazines, 1950-1998. Journal of Human Nutrition and Dietetics, 27(SUPPL2), 124–134.
Baulcombe, S. D., Dunwell, J., Jones, J., Pickett, J., & Puigdomenech, P. (2014). GM Science Update: A report to the Council for Science and Technology. http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/292174/cst-14-634a-gm-science-update.pdf.
Blais, A., & Weber, E. U. (2006). A domain-specific risk-taking (DOSPERT) scale for adult populations. Judgement and Decision Making, 1(1), 33–47.
Burnett, J. (1989). Plenty and Want: A Social History of Food in England from 1815 until the Present Day (3rd editio.). London: Routledge.
Connor, M., & Siegrist, M. (2010). Factors influencing people’s acceptance of gene technology: The role of knowledge, health expectations, naturalness, and social trust. Science Communication, 32(4), 514–538.
Connor, M., & Siegrist, M. (2011). The power of association: Its impact on willingness to buy GM food. Human and Ecological Risk Assessment: An International Journal, 17(5), 1142–1155.
Cook, T. M., Russell, J. M., & Barker, M. E. (2014). Dietary advice for muscularity, leanness and weight control in Men’s health magazine: A content analysis. BMC Public Health, 14, 1062.
Coppola, A., & Verneau, F. (2014). An empirical analysis on technophobia. Agricultural and Food Economics, 2(2), 1–16.
Costa-Font, M., & Gil, J. M. (2008). Consumer acceptance of genetically modified food (GM) in Spain: A structural equation approach. Risk Management, 10(3), 194–204.
Costa-Font, M., Gil, J. M., & Traill, W. B. (2008). Consumer acceptance, valuation of and attitudes towards genetically modified food: Review and implications for food policy. Food Policy, 33(2), 99–111.
Dreezens, E., Martijn, C., Tenbült, P., Kok, G., & de Vries, N. K. (2005). Food and values: An examination of values underlying attitudes toward genetically modified- and organically grown food products. Appetite, 44(1), 115–122.
European Academies Science Advisory Council. (2013). Planting the future: Opportunities and challenges for using crop genetic improvement technologies for sustainable agriculture. EASAC Policy Report 21.
Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster Analysis (5th Editio.). Chichester: John Wiley & Sons Ltd.
Finucane, M. L., & Holup, J. L. (2005). Psychosocial and cultural factors affecting the perceived risk of genetically modified food: An overview of the literature. Social Science and Medicine, 60(7), 1603–1612.
Finucane, M. L., Alhakami, A., Slovic, P., & Johnson, S. M. (2000a). The affect heuristic in judgments of risks and benefits. Journal of Behavioral Decision Making, 13(1), 1.
Finucane, M. L., Slovic, P., Mertz, C. K., Flynn, J., & Satterfield, T. A. (2000b). Gender, race and perceived risk: The “white male” effect. Health, Risk and Society, 2(2), 159–172.
Frewer, L. J., van der Lans, I. a., Fischer, A. R. H., Reinders, M. J., Menozzi, D., Zhang, X., et al. (2013). Public perceptions of Agri-food applications of genetic modification – A systematic review and meta-analysis. Trends in Food Science & Technology, 30(2), 142–152.
Funk, C., & Kennedy, B. (2016). The new food fights: U.S. public divides over food science. Washington: Pew Research Centre http://www.pewinternet.org/2016/12/01/the-new-food-fights/.
Gaskell, G., Stares, S., Allansdottir, A., & Allum, N. (2010). Europeans and biotechnology in 2010 - winds of change? A report to the European Commission's Directorate-General for Research. http://ec.europa.eu/public_opinion/archives/ebs/ebs_341_winds_en.pdf.
Goode, J. G., Curtis, K., & Theophano, J. (2003). Meal formats, meal cycles and menu negotiation in the maintenance of an Italian-American community. In M. Douglas (Ed.), Food in the Social Order: Mary Douglas Collected Works Volume 9 (9th Editio., pp. 143–218). Oxford: Routledge.
Green, S. B. (1991). How many subjects does it take to do a regression analysis. Multivariate Behavioral Research, 26(3), 499–510.
Gupta, N., Fischer, A. R., & Frewer, L. J. (2012). Socio-psychological determinants of public acceptance of technologies: A review. Public Understanding of Science, 21(7), 782–795.
Haidt, J. (2001). The emotional dog and its rational tail; a social intuitionist approach to moral judgement. Psychological Review, 108(4), 814–838.
Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: The Guilford Press.
Humble, N. (2005). Culinary pleasures: Cookbooks and the transformation of British food. London: Faber and Faber.
Joffe, H. (2003). Risk: From perception to social representation. British Journal of Social Psychology, 42(Pt 1), 55–73.
Johnston, E. L. (2016). Agrarian dreams and neoliberal futures in life writing of the alternative food movement. Food and Foodways, 24(1–2), 9–29.
Loner, E. (2008). The importance of having a different opinion Europeans and GM foods. European Journal of Sociology, 49(01), 31–63.
Lucht, J. M. (2015). Public acceptance of plant biotechnology and GM crops. Viruses, 7(8), 4254–4281.
Mohr, P., & Golley, S. (2016). Responses to GM food content in context with food integrity issues: Results from Australian population surveys. New Biotechnology, 33(1), 91–98.
Moore, G. E. (1903). Principia ethica. Cambridge: Cambridge University Press.
National Academies of Sciences Engineering and Medicine. (2016). Genetically Engineered Crops: Experiences and Prospects (Vol. xlv). Washington: The National Academies Press.
O’Connor, E., Cowan, C., Williams, G., O’Connell, J., & Boland, M. (2005). Acceptance by Irish consumers of a hypothetical GM dairy spread that reduces cholesterol. British Food Journal, 107(6), 361–380.
Rozin, P., Fischler, C., & Shields-Argelès, C. (2012). European and American perspectives on the meaning of natural. Appetite, 59(2), 448–455.
Saher, M., Lindeman, M., & Hursti, U.-K. K. (2006). Attitudes towards genetically modified and organic foods. Appetite, 46(3), 324–331.
Scott, S. E., Inbar, Y., & Rozin, P. (2016). Evidence for absolute moral opposition to genetically modified food in the United States. Perspectives on psychological science: a Journal of the Association for Psychological Science, 11(3), 315–324.
Shewfelt, R. L. (2017). In defense of processed food. New York: Springer International Publishing.
Siegrist, M., Keller, C., & Kiers, H. A. L. (2006). Lay people’s perception of food hazards: Comparing aggregated data and individual data. Appetite, 47(3), 324–332.
Slovic, P., Finucane, M. L., Peters, E., & MacGregor, D. G. (2007). The affect heuristic. European Journal of Operational Research, 177(3), 1333–1352.
Traill, W. B., Jaeger, S. R., Yee, W. M. S., Valli, C., House, L. O., Lusk, J. L., et al. (2004). Categories of GM risk-benefit perceptions and their antecedents. AgBioForum, 7(4), 176–186.
Wesseler, J., Smart, R. D., Thomson, J., & Zilberman, D. (2017). Foregone benefits of important food crop improvements in sub-Saharan Africa. PLoS One, 12(7), 1–12.
Whitty, C. J. M., Jones, M., Tollervey, a., & Wheeler, T. (2013). Africa and Asia need a rational debate on GM crops. Nature, 497(7447), 31–33.