Why FDE might be too strong for Beall
Tóm tắt
In his “The simple argument for subclassical logic,” Jc Beall advances an argument that led him to take FDE as the one true logic (the latter point is explicitly made clear in his “FDE as the One True Logic”). The aim of this article is to point out that if we follow Beall’s line of reasoning for endorsing FDE, there are at least two additional reasons to consider that FDE is too strong for Beall’s purposes. In fact, we claim that Beall should consider another weaker subclassical logic as the logic adequate for his project. To this end, we first briefly present Beall’s argument for FDE. Then, we discuss two specific topics that seem to motivate us to weaken FDE. We then introduce a subsystem that will enjoy all the benefits of Beall’s suggestion.
Tài liệu tham khảo
Angell, R. B. (1977). Three systems of first degree entailment. Journal of Symbolic Logic, 42, 147.
Arenhart, J. R. B. (2022). Newton da Costa on hypothetical models in logic and on the modal status of logical laws. Axiomathes, 32(6), 1191–1211. https://doi.org/10.1007/s10516-021-09577-0
Avron, A. (2005). A non-deterministic view on non-classical negations. Studia Logica, 80(2–3), 159–194.
Avron, A., Ben-Naim, J., & Konikowska, B. (2007). Cut-free ordinary sequent calculi for logics having generalized finite-valued semantics. Logica Universalis., 1(1), 41–70.
Avron, A., & Konikowska, B. (2005). Multi-valued calculi for logics based on non-determinism. Logic Journal of IGPL, 13(4), 365–387.
Avron, A., & Lev, I. (2005). Non-deterministic multiple-valued structures. Journal of Logic and Computation, 15(3), 241–261.
Avron, A., & Zamansky, A. (2011). Non-deterministic semantics for logical systems. In D. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. 16, pp. 227–304). Springer.
Batens, D. (1980). Paraconsistent extensional propositional logics. Logique et Analyse, 90/91(23), 195–234.
Beall, Jc. (2016). Off-topic: A new interpretation of weak-Kleene logic. Australasian Journal of Logic, 13(6)
Beall, Jc. (2017). There is no logical negation: True, false, both, and neither. Australasian Journal of Logic, 14(1) https://doi.org/10.26686/ajl.v14i1.4025
Beall, Jc. (2018). The simple argument for subclassical logic. Philosophical Issues, 28(1), 30–54.
Beall, Jc. (2019). New essays on Belnap-Dunn logic. In H. Omori & H. Wansing (Eds.), FDE as the one true logic (pp. 115–125). Springer.
Belnap, N. (1977). How a computer should think. In G. Ryle (Ed.), Contemporary aspects of philosophy (pp. 30–55). Oriel Press.
Belnap, N. (1977). A useful four-valued logic. In J. M. Dunn & G. Epstein (Eds.), Modern uses of multiple-valued logic (pp. 8–37). D. Reidel Publishing Co.
Berto, F. (2015). A modality called ‘negation’. Mind., 124(495), 761–793.
Berto, F., & Restall, G. (2019). Negation on the Australian plan. Journal of Philosophical Logic, 48(6), 1119–1144.
Bueno, O., & Colyvan, M. (2004). Logical non-apriorism and the law of non-contradiction. In Graham Priest, Jc. Beall, & Bradley P. Armour-Garb (Eds.), The law of non-contradiction : New philosophical essays (pp. 156–175). Oxford University Press.
Ciuni, R., Ferguson, T. M., & Szmuc, D. (2018). Relevant logics obeying component homogeneity. Australasian Journal of Logic, 15(2), 301–361.
da Costa, N. C. A. (1997). Logiques classiques et non classiques: Essai sur les fondements de la logique. Culture scientifique: Masson.
De, M., & Omori, H. (2018). There is more to negation than modality. Journal of Philosophical Logic, 47(2), 281–299.
Dunn, J. M. (1976). Intuitive semantics for first-degree entailments and “coupled trees”. Philosophical Studies, 29(3), 149–168.
Ferguson, T. M. (2016). Faulty Belnap computers and subsystems of FDE. Journal of Logic and Computation, 26(5), 1617–1636.
Fine, K. (2016). Angellic content. Journal of Philosophical Logic, 45(2), 199–226.
Jammer, M. (1974). The philosophy of quantum mechanics: The interpretations of quantum mechanics in historical perspective. Wiley.
Maudlin, T. (2005). The tale of quantum logic. In Yemima Ben-Menahem (Ed.), Hilary Putnam, contemporary philosophy in focus (pp. 156–187). Cambridge: Cambridge University Press.
Omori, H., & De, M. (2022). Shrieking, shrugging, and the Australian plan. Notre Dame Journal of Formal Logic, 63(2), 137–141.
Omori, H., & Sano, K. (2015). Generalizing functional completeness in Belnap-Dunn logic. Studia Logica, 103(5), 883–917.
Priest, G. (2006). Doubt truth to be a liar. Oxford, England: Oxford University Press.