Whitham Equations, Bergman Kernel and Lax—Levermore Minimizer

Acta Applicandae Mathematicae - Tập 82 - Trang 1-86 - 2004
Tamara Grava1,2
1Department of Mathematics, Imperial College, London, U.K.
2SISSA, Trieste, Italy

Tóm tắt

We study multiphase solutions of the Whitham equations. The Whitham equations describe the zero dispersion limit of the Cauchy problem for the Korteweg—de Vries (KdV) equation. The zero dispersion solution of the KdV equation is determined by the Lax—Levermore minimization problem. The minimizer is a measurable function on the real line. When the support of the minimizer consists of a finite number of disjoint intervals to be determined, the minimization problem can be reduced to a scalar Riemann Hilbert (RH) problem. For each fixed x and t ≥ 0, the end-points of the contour are determined by the solution of the Whitham equations. The Lax—Levermore minimizer and the solution of the Whitham equations are described in terms of a kernel related to the Bergman kernel. At t = 0 the support of the minimizer consists of one interval for any value of x, while for t > 0, the number of intervals is larger than one in some regions of the (x,t) plane where the multiphase solutions of the Whitham equations develop. The increase of the number of intervals happens whenever the solution of the Whitham equations has a point of gradient catastrophe. For a class of smooth monotonically increasing initial data, we show that the support of the Lax—Levermore minimizer increases or decreases the number of its intervals by one near each point of gradient catastrophe. This result justifies the formation and extinction of the multiphase solutions of the Whitham equations. Furthermore we characterize a class of initial data for which all the points of gradient catastrophe occur only a finite number of times and therefore the support of the Lax—Levermore minimizer consists of a finite number of disjoint intervals for any x and t ≥ 0. This corresponds to give an upper bound to the genus of the solution of the Whitham equations. Similar results are obtained for the semi-classical limit of the defocusing nonlinear Schrödinger equation.

Tài liệu tham khảo

Avilov, V. V. and Novikov, S. P.: Evolution of the Whitham zone in KdV theory, Soviet Phys. Dokl. 32 (1987), 366–368. Beals, R., Deift, P. and Tomei, C.: Direct and Inverse Scattering on the Line, Math. Surveys Monograph 28, Amer. Math. Soc., Providence, RI, 1988. Bender, C. M. and Orszag, S. A.: Advanced Mathematical Methods for Scientists and Engineers, Internat. Ser. Pure Appl. Math., McGraw-Hill, New York, 1978. Bergman, S.: The Kernel Function and Conformal Mapping, Math. Surveys 5, Amer. Math. Soc., New York, 1950. Carroll, R.: Various aspects of Whitham times, Acta Appl. Math. 60(3) (2000), 225–316. Chen, Y. and Grava, T.: Eigenvalue correlation function on Hyperelliptic Riemann surfaces, J. Phys. A 35 (2002), 45–51. Choen, A.: Solutions of the Korteweg-de Vries equation with steplike initial profile, Comm. Partial Differential Equations 9(8) (1984), 751–806. Darboux, G.: Lecons sur les systems ortogonaux et les coordonnes curvilignes, Paris, 1897. Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, CIMS Lecture Notes 3, 1999. Deift, P., Kriecherbauer, T. and McLaughlin, K. T.-R.: New results on the equilibrium measure for logarithmic potentials in the presence of an external field, J. Approx. Theory 95(3) (1998), 388–475. Deift, P., Kriecherbauer, T., McLaughlin, K. T.-R., Venakides, K. S. and Zhou, X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math. 52(11) (1999), 1335–1425. Deift, P. A., Its, A. R. and Zhou, X.: A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics, Ann. of Math. (2) 146(1) (1997), 149–235. Deift, P. and McLaughlin, K. T.-R.: A continuum limit of the Toda lattice, Mem. Amer. Math. Soc. 131(624) (1998), x+216 pp. Deift, P., Venakides, S. and Zhou, X.: New result in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems, IMRN 6 (1997), 285–299. Deift, P. and Zhou, X.: A Steepest descent method for oscillatory Riemann-Hilbert problems: Asymptotics for the MKdV equations, Ann. of Math. 137 (1993), 295–368. Deift, P., Kriecherbauer, T., McLaughlin, K. T. R., Venakides, S. and Zhou, X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math. 52(11) (1999), 1335–1425. Dubrovin, B.: Lectures on 2-D Topological Field Theory, Lecture Notes in Math. 1620, Springer-Verlag, New York, 1996. Dubrovin, B.: Differential geometry of moduli spaces and its applications to soliton equations and to topological conformal field theory, In: Surveys in Differential Geometry: Integral Systems, Surv. Differ. Geom. IV, Int. Press, Boston, MA, 1998, pp. 213–238. Dubrovin, B.: Functionals of the Peierls-Fröhlich type and the variational principle for the Whitham equations, In: Solitons, Geometry, and Topology: On the Crossroad, Amer. Math. Soc. Transl. Ser. 2 179, Amer. Math. Soc., Providence, RI, 1997, pp. 35–44. Dubrovin, B.: Private communication, 2000. Dubrovin, B. and Novikov, S. P.: Hydrodynamic of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory, Russian Math. Surveys 44(6) (1989), 35–124. Dubrovin, B., Matveev, V. B. and Novikov, S. P.: Nonlinear equations of Korteweg de Vries type, finite zone operators and Abelian varieties, Russian Math. Surveys 31(1) (1976), 59–146. El, G. A.: Generating function of the Whitham-KdV hierarchy and effective solution of the Cauchy problem, Phys. Lett. A 222 (1996), 393–399. El, G. and Krylov, A.: General solution of the Cauchy problem for the defocusing NLS equations in the Whitham limit, Phys. Lett. A 203 (1995), 77–82. El, G. A., Krylov, A. L. and Venakides, S.: Unified approach to KdV modulations, Comm. Pure Appl. Math. 54(10) (2001), 1243–1270. Fay, J.: Theta Functions on Riemann Surface, Lecture Notes in Math. 352, Springer-Verlag, Berlin, 1973. Ferapontov, E. V. and Khusnutdinova, K. R.: On integrability of (2 + 1)-dimensional quasilinear systems, xxx.lanl.gov/nlin.SI/0305044, 23 pages. Flaschka, H., Forest,M. and McLaughlin, D. H.: Multiphase averaging and the inverse spectral solution of the Korteweg-de Vries equations, Comm. Pure Appl. Math. 33 (1980), 739–784. Forest, M. G. and Lee, J. L.: Geometry and modulation theory for periodic nonlinear Schrödinger equation, In: Oscillations Theory, Computation and Methods of Compensated Compactness, IMA Volumes in Mathematics and its Applications 2, Springer-Verlag, 1986, pp. 35–69. Gakhov, F. D.: Boundary Value Problems, Translated from Russian, Reprint of the 1966 translation, Dover Publications, Inc., New York, 1990. Geogdzhaev, V. V.: Solution of the Benney equations by the inverse scattering method, Theoret. Math. Phys. 73 (1987), 255–263. Gibbons, J. and Kodama, Y.: Solving dispersion-less Lax equations, In: Singular Limits of Dispersive Waves (Lyon, 1991), NATO Adv. Sci. Inst. Ser. B Phys. 320, Plenum, New York, 1994, pp. 61–66. Gibbons, J. and Tsarev, S. P.: Conformal maps and reductions of the Benney equations, Phys. Lett. A 258(4–6) (1999), 263–271. Grava, T.: From the solution of the Tsarev system to the solution of the Whitham equations, to appear in J. Math. Phys. Anal. Geom., Preprint nlin.SI/0007016. Grava T.: Riemann-Hilbert problem for the small dispersion limit of the KdV equation and linear overdetermined systems of Euler-Poisson-Darboux type, Comm. Pure Appl. Math. 55(4) (2002), 395–430. Grava, T. and Tian, F.-R.: The generation, propagation and extinction of multiphases in the KdV zero dispersion limit, Comm. Pure Appl. Math. 55 (2002), 1569–1639. Gurevich, A. V., Krylov A. L. and El, G. A.: Evolution of a Riemann wave in dispersive hydrodynamics, Soviet Phys. JEPT 74(6) (1992), 957–962. Gurevich, A. G. and Pitaevskii, L. P.: Non stationary structure of a collisionless shock waves, JEPT Lett. 17 (1973), 193–195. Hawley, N. S. and Schiffer, M.: Half order differentials on Riemann surfaces, Acta Math. 115 (1966), 199–236. Jen, S., Levermore, C. D. and McLaughlin, D. W.: Semiclassical limit of the defocusing NLS hierarchy, Comm. Pure App. Math. 52 (1999), 613–654. Kamvissis, S., McLaughlin, K. T.-R. and Miller, P. D.: Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation, Ann. Math. Stud. 154, Princeton Univ. Press, Princeton, NJ, 2003. Kappler, T.: Solution of the Korteweg de Vries equations with steplike initial data, J. Differential Equations 63 (1986), 306, 331. Kodama, Y.: Solutions of the dispersion-less Toda equation, Phys. Lett. A 147(8–9) (1990), 477–482. Kokotov, A. and Korotkin, D.: Some integrable systems on Hurwitz spaces, Preprint xxx.lanl.gov/math-ph/0112051. Konopelchenko, B. and Martínez Alonso, B. L.: \(\bar \partial \)-equations, integrable deformations of quasiconformal mappings and Whitham hierarchy, Phys. Lett. A 286(2–3) (2001), 161–166. Korotkin, D.: Matrix Riemann-Hilbert problems related to branched coverings of C P 1, Preprint xxx.lanl.gov/math-ph/0106009. Krichever, I. M.: The method of averaging for two dimensional integrable equations, Funct. Anal. Appl. 22 (1988), 200–213. Krichever, I. M.: The ?-function of the universal Whitham hierarchy, matrix models and topological field theories, Comm. Pure Appl. Math. 47(4) (1994), 437–475. Krichever, I.: Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations. Dedicated to Yuri I. Manin on the occasion of his 65th birthday, Moscow Math. J. 2(4) (2002), 717–752, 806. Kudashev, V. R. and Sharapov, S. E.: Inheritance of KdV symmetries underWhitham averaging and hydrodynamic symmetry of the Whitham equations, Theoret. Math. Phys. 87(1) (1991), 40–47. Kuijlaars, A. B. J.: On the finite-gap ansatz in the continuum limit of the Toda lattice, Duke Math. J. 104(3) (2000), 433–462. Kuijlaars, A. B. J. and McLaughlin, K. T.-R.: Long time behavior of the continuum limit of the Toda lattice, and the generation of infinitely many gaps from C ? initial data, Comm. Math. Phys. 221(2) (2001), 305–333. Kuijlaars, A. B. J. and McLaughlin, K. T.-R.: Generic behavior of the density of states in random matrix theory and equilibrium problems in the presence of real analytic external fields, Comm. Pure Appl. Math. 53(6) (2000), 736–785. Lax, P. D. and Levermore, C. D.: The small dispersion limit of the Korteweg de Vries equation, I, II, III, Comm. Pure Appl. Math. 36 (1983), 253–290, 571–593, 809–830. Levermore, C. D.: The hyperbolic nature of the zero dispersion KdV limit, Comm. Partial Differential Equations 13 (1988), 495–514. Magri, F.: A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19(5) (1978), 1156–1162. Mazur, N. G.: Quasiclassical asymptotics in the method of the inverse scattering problem for KdV equations, and the solution of Whitham's modulation equations, Theoret. and Math. Phys. 106(1) (1996), 35–49. McLaughlin, D. W. and Strain, J. A.: Computing the weak limit of KdV, Comm. Pure Appl. Math. 47(10) (1994), 1319–1364. Muskhelishvili, N. I.: Singular Integral Equations, Noordhoff International Publishing, Leyden, 1977. Pavlov, M. V.: Nonlinear Schrödinger equations and Bogolubov-Whitham method of averaging, Theoret. Math. Phys. 71 (1987), 351. Potemin, G. V.: Algebraic-geometric construction of selfsimilar solutions of the Whitham equations, Uspekhi Mat. Nauk 43(5) (1988), 211–212. Rodin, Yu. L.: The Riemann Boundary Value Problem on Riemann Surfaces, Math. Appl., Soviet Series, D. Reidel Publishing Company, Holland, 1987. Shabat, A. B.: One dimensional perturbations of differentials operator and the inverse scattering problem, In: Problems in Mechanics and Mathematical Physics, Nauka, Moscow, 1976. Springer, G.: Introduction to Riemann Surfaces, Addison-Wesley, Reading, MA, 1957. Takasaki, K.: Spectral curves and Whitham equations in isomonodromic problems of Schlesinger type. Mikio Sato: A great Japanese mathematician of the twentieth century, Asian J. Math. 2(4) (1998), 1049–1078. Tian, F.-R.: Oscillations of the zero dispersion limit of the Korteweg de Vries equations, Comm. Pure Appl. Math. 46 (1993), 1093–1129. Tian, F.-R.: The Whitham type equations and linear over-determined systems of Euler-Poisson-Darboux type, Duke Math. J. 74 (1994), 203–221. Tian, F.-R.: The initial value problem for the Whitham averaged system, Comm. Math. Phys. 166(1) (1994), 79–115. Tian, F.-R. and Jian, Y.: On theWhitham equations for the semiclassical limit of the defocusing nonlinear Schrödinger equation, Comm. Pure Appl. Math. 52(6) (1999), 655–692. Tsarev, S. P.: Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type, Soviet Math. Dokl. 31 (1985), 488–491. Venakides, S.: The zero dispersion limit of the Korteweg de Vries equation for initial potential with nontrivial reflection coefficient, Comm. Pure Appl. Math. 38 (1985), 125–155. Venakides, S.: The Korteweg de Vries equations with small dispersion: Higher order Lax—Levermore theory, Comm. Pure Appl. Math. 43 (1990), 335–361. Whitham, G. B.: Linear and Nonlinear Waves, Wiley, New York, 1974. Witten, E.: Topological sigma models, In: Comm. Math. Phys. 118(3) (1988), 411–449. Dijkgraaf, R., Verlinde, H. and Verlinde, E.: Notes on topological string theory and 2D quantum gravity, In: String Theory and Quantum Gravity (Trieste, 1990), World Sci. Publishing, River Edge, NJ, 1991, pp. 91–156. Wright, O. C.: Korteweg-de Vries zero dispersion limit: Through first breaking for cubic-like analytic initial data, Comm. Pure Appl. Math. 46(3) (1993), 423–440. Zakharov, V. E.: Description of the n-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type, I, Integration of the Lam equations, Duke Math. J. 94(1) (1998), 103–139. Zverovich, E. I.: Boundary value problems in the theory of analytic functions in the Hölder classes on Riemann surfaces, Russian Math. Surveys 26(1) (1971), 118–185.