Which ultrasound transducer type is best for diagnosing pneumothorax?
Tóm tắt
An accurate physical examination is essential in the care of critically ill and injured patients. However, to diagnose or exclude a pneumothorax, chest auscultation is unreliable compared to lung ultrasonography. In the dynamic prehospital environment, it is desirable to have the best possible ultrasound transducer readily available. The objective is to assess the difference between a linear-array, curved-array, and phased-array ultrasound transducer in the assessment for pneumothorax and to determine which is best. In this double-blinded, cross-sectional, observational study, 15 observers, experienced in lung ultrasonography, each assessed 66 blinded ultrasound video clips of either normal ventilation or pneumothorax that were recorded with three types of ultrasound transducers. The clips were recorded in 11 adult patients that underwent thoracoscopic lung surgery immediately before and after the surgeon opened the thorax. The diagnostic accuracy of the three transducers, elapsed time until a diagnosis was made, and the perceived image quality was recorded. In total, 15 observers assessed 990 ultrasound video clips. The overall sensitivity and specificity were 98.2% and 97.2%, relatively. No significant difference was found in the diagnostic performance between transducers. A diagnosis was made slightly faster in the linear-array transducer clips, compared to the phased-array transducer (p = .031). For the linear-, curved-, and phased-array transducer, the image quality was rated at a median (interquartile range [IQR]) of 4 (IQR 3–4), 3 (IQR 2–4), and 2 (IQR 1–2), relatively. Between the transducers, the difference in image quality was significant (p < .0001). There was no difference in diagnostic performance of the three transducers. Based on image quality, the linear-array transducer might be preferred for (prehospital) lung ultrasonography for the diagnosis of pneumothorax.
Tài liệu tham khảo
Chen SC, Markmann JF, Kauder DR, Schwab CW (1997) Hemopneumothorax missed by auscultation in penetrating chest injury. J Trauma 42(1):86–89
Kong VY, Sartorius B, Clarke DL (2015) The accuracy of physical examination in identifying significant pathologies in penetrating thoracic trauma. Eur J Trauma Emerg Surg 41(6):647–650
Hirshberg A, Thomson SR, Huizinga WK (1988) Reliability of physical examination in penetrating chest injuries. Injury 19(6):407–409
Rantanen NW (1986) Diseases of the thorax. Vet Clin North Am Equine Pract 2(1):49–66
Blaivas M, Lyon M, Duggal S (2005) A prospective comparison of supine chest radiography and bedside ultrasound for the diagnosis of traumatic pneumothorax. Acad Emerg Med 12(9):844–849
Nagarsheth K, Kurek S (2011) Ultrasound detection of pneumothorax compared with chest X-ray and computed tomography scan. Am Surg 77(4):480–484
Lichtenstein DA, Meziere GA (2008) Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol. Chest 134(1):117–125
Gillman LM, Kirkpatrick AW (2012) Portable bedside ultrasound: the visual stethoscope of the 21st century. Scand J Trauma Resusc Emerg Med 20:18
Wittenberg M (2014) Will ultrasound scanners replace the stethoscope? BMJ 348:g3463
Price DD, Wilson SR, Murphy TG (2000) Trauma ultrasound feasibility during helicopter transport. Air Med J 19(4):144–146
Nelson BP, Melnick ER, Li J (2011) Portable ultrasound for remote environments, part I: feasibility of field deployment. J Emerg Med 40(2):190–197
Roline CE, Heegaard WG, Moore JC et al (2013) Feasibility of bedside thoracic ultrasound in the helicopter emergency medical services setting. Air Med J 32(3):153–157
Lichtenstein DA, Menu Y (1995) A bedside ultrasound sign ruling out pneumothorax in the critically ill: lung sliding. Chest 108(5):1345–1348
Lichtenstein DA (2014) Lung ultrasound in the critically ill. Ann Intensive Care 4(1):1
Adhikari S (2014) High-frequency transducers for point-of-care ultrasound applications: what is the optimal frequency range? Intern Emerg Med 9(4):463–466
Tasci O, Hatipoglu ON, Cagli B, Ermis V (2016) Sonography of the chest using linear-array versus sector transducers: correlation with auscultation, chest radiography, and computed tomography. J Clin Ultrasound 44(6):383–389
Rajajee V, Vanaman M, Fletcher JJ, Jacobs TL (2011) Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit Care 15(3):506–515
Biegler N, McBeth PB, Tiruta C et al (2013) The feasibility of nurse practitioner-performed, telementored lung telesonography with remote physician guidance—‘a remote virtual mentor’. Crit Ultrasound J 5(1):5