When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events

Hydrology and Earth System Sciences - Tập 18 Số 2 - Trang 575-594
Florent Lobligeois1, Vazken Andréassian1, Charles Perrin1, Pierre Tabary2,3, C. Loumagne1
1Irstea, Hydrosystems and Bioprocesses Research Unit, Antony, France
2Direction des Systèmes d'Observation &ndash
3Météo France, Toulouse, France

Tóm tắt

Abstract. Precipitation is the key factor controlling the high-frequency hydrological response in catchments, and streamflow simulation is thus dependent on the way rainfall is represented in a hydrological model. A characteristic that distinguishes distributed from lumped models is the ability to explicitly represent the spatial variability of precipitation. Although the literature on this topic is abundant, the results are contrasting and sometimes contradictory. This paper investigates the impact of spatial rainfall on runoff generation to better understand the conditions where higher-resolution rainfall information improves streamflow simulations. In this study, we used the rainfall reanalysis developed by Météo-France over the whole country of France at 1 km and 1 h resolution over a 10 yr period. A hydrological model was applied in the lumped mode (a single spatial unit) and in the semidistributed mode using three unit sizes of subcatchments. The model was evaluated against observed streamflow data using split-sample tests on a large set of French catchments (181) representing a variety of sizes and climate conditions. The results were analyzed by catchment classes and types of rainfall events based on the spatial variability of precipitation. The evaluation clearly showed different behaviors. The lumped model performed as well as the semidistributed model in western France, where catchments are under oceanic climate conditions with quite spatially uniform precipitation fields. By contrast, higher resolution in precipitation inputs significantly improved the simulated streamflow dynamics and accuracy in southern France (Cévennes and Mediterranean regions) for catchments in which precipitation fields were identified to be highly variable in space. In all regions, natural variability allows for contradictory examples to be found, showing that analyzing a large number of events over varied catchments is warranted.

Từ khóa


Tài liệu tham khảo

Ajami, N. K., Gupta, H. V, Wagener, T., and Sorooshian, S.: Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system, J. Hydrol., 298, 112–135, https://doi.org/10.1016/j.jhydrol.2004.03.033, 2004.

Andréassian, V., Perrin, C., Michel, C., Usartsanchez, I., and Lavabre, J.: Impact of imperfect rainfall knowledge on the efficiency and the parameters of watershed models, J. Hydrol., 250, 206–223, https://doi.org/10.1016/S0022-1694(01)00437-1, 2001.

Andréassian, V., Oddos, A., Michel, C., Anctil, F., Perrin, C., and Loumagne, C.: Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall–runoff models: A theoretical study using chimera watersheds, Water Resour. Res., 40, 1–9, https://doi.org/10.1029/2003WR002854, 2004.

Andréassian, V., Perrin, C., Berthet, L., Le Moine, N., Lerat, J., Loumagne, C., Oudin, L., Mathevet, T., Ramos, M.-H., and Valéry, A.: HESS Opinions "Crash tests for a standardized evaluation of hydrological models", Hydrol. Earth Syst. Sci., 13, 1757–1764, https://doi.org/10.5194/hess-13-1757-2009, 2009.

Apip, Sayama, T., Tachikawa, Y., and Takara, K.: Spatial lumping of a distributed rainfall-sediment-runoff model and its effective lumping scale, Hydrol. Process., 26, 855–871, https://doi.org/10.1002/hyp.8300, 2012.

Arnaud, P., Bouvier, C., Cisneros, L., and Dominguez, R.: Influence of rainfall spatial variability on flood prediction, J. Hydrol., 260, 216–230, https://doi.org/10.1016/S0022-1694(01)00611-4, 2002.

Arnaud, P., Lavabre, J., Fouchier, C., Diss, S., and Javelle, P.: Sensitivity of hydrological models to uncertainty in rainfall input, Hydrolog. Sci. J., 56, 397–410, https://doi.org/10.1080/02626667.2011.563742, 2011.

Bárdossy, A. and Das, T.: Influence of rainfall observation network on model calibration and application, Hydrol. Earth Syst. Sci., 12, 77–89, https://doi.org/10.5194/hess-12-77-2008, 2008.

Bell, V. A. and Moore, R. J.: The sensitivity of catchment runoff models to rainfall data at different spatial scales, Hydrol. Earth Syst. Sci., 4, 653–667, https://doi.org/10.5194/hess-4-653-2000, 2000.

Bentura, P. and Michel, C.: Flood routing in a wide channel with a quadratic lag-and-route method, Hydrolog. Sci. J., 42, 169–189, https://doi.org/10.1080/02626669709492018, 1997.

Berne, A., Delrieu, G., Creutin, J. D., and Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban hydrology, J. Hydrol., 299, 166–179, https://doi.org/10.1016/j.jhydrol.2004.08.002, 2004.

Berne, A., Delrieu, G., and Boudevillain, B.: Variability of the spatial structure of intense Mediterranean precipitation, Adv. Water Resour., 32, 1031–1042, https://doi.org/10.1016/j.advwatres.2008.11.008, 2009.

Beven, K.: Prophecy, reality and uncertainty in distributed hydrological modelling, Adv. Water Resour., 16, 41–51, https://doi.org/10.1016/0309-1708(93)90028-E, 1993.

Beven, K.: The limits of splitting: Hydrology, Sci. Total Environ., 183, 89–97, https://doi.org/10.1016/0048-9697(95)04964-9, 1996.

Beven, K.: How far can we go in distributed hydrological modelling?, Hydrol. Earth Syst. Sci., 5, 1–12, https://doi.org/10.5194/hess-5-1-2001, 2001.

Beven, K. and Hornberger, G. M.: Assessing the effect of spatial pattern of precipitation in modeling streamflow hydrographs, J. Am. Water Resour. Assoc., 18, 823–829, https://doi.org/10.1111/j.1752-1688.1982.tb00078.x, 1982.

Biggs, E. M. and Atkinson, P. M.: A comparison of gauge and radar precipitation data for simulating an extreme hydrological event in the Severn Uplands, UK, Hydrol. Process., 25, 795–810, https://doi.org/10.1002/hyp.7869 2011.

Bonnifait, L., Delrieu, G., Le Lay, M., Boudevillain, B., Masson, A., Belleudy, P., Gaume, E., and Shah, S.: Distributed hydrologic and hydraulic modelling with radar rainfall input: Reconstruction of the 8–9 September 2002 catastrophic flood event in the Gard region (France), Adv. Water Resour., 32, 1077–1089, https://doi.org/10.1016/j.advwatres.2009.03.007, 2009.

Borga, M.: Accuracy of radar rainfall estimates for streamflow simulation, J. Hydrol., 267, 26–39, https://doi.org/10.1016/S0022-1694(02)00137-3, 2002.

Boyle, D. P., Gupta, H. V, Koren, V., Zhang, Z., and Smith, M. B.: Toward improved streamflow forecasts: Value of semidistributed modeling, Water Resour., 37, 2749–2759, 2001.

Carpenter, T. and Georgakakos, K. P.: Intercomparison of lumped versus distributed hydrologic model ensemble simulations on operational forecast scales, J. Hydrol., 329, 174–185, https://doi.org/10.1016/j.jhydrol.2006.02.013, 2006.

Carpenter, T., Georgakakos, K. P., and Sperfslagea, J.: On the parametric and NEXRAD-radar sensitivities of a distributed hydrologic model suitable for operational use, J. Hydrol., 253, 169–193, https://doi.org/10.1016/S0022-1694(01)00476-0, 2001.

Cole, S. J. and Moore, R. J.: Hydrological modelling using raingauge- and radar-based estimators of areal rainfall, J. Hydrol., 358, 159–181, https://doi.org/10.1016/j.jhydrol.2008.05.025, 2008.

Das, T., Bárdossy, A., Zehe, E., and He, Y.: Comparison of conceptual model performance using different representations of spatial variability, J. Hydrol., 356, 106–118, https://doi.org/10.1016/j.jhydrol.2008.04.008, 2008.

Delrieu, G., Nicol, J., Yates, E., Kirstetter, P.-E., Creutin, J.-D., Anquetin, S., Obled, C., Saulnier, G.-M., Ducrocq, V., Gaume, E., Payrastre, O., Andrieu, H., Ayral, P.-A., Bouvier, C., Neppel, L., Livet, M., Lang, M., Du-Châtelet, J. P., Walpersdorf, A., and Wobrock, W.: The Catastrophic Flash-Flood Event of 8–9 September 2002 in the Gard Region, France: A First Case Study for the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory, J. Hydrometeorol., 6, 34–52, https://doi.org/10.1175/JHM-400.1, 2005.

Delrieu, G., Braud, I., Berne, A., Borga, M., Boudevillain, B., Fabry, F., Freer, J., Gaume, E., Nakakita, E., and Seed, A.: Weather radar and hydrology, Adv. Water Resour., 32, 969–974, https://doi.org/10.1016/j.advwatres.2009.03.006, 2009.

Dodov, B. and Foufoula-Georgiou, E.: Incorporating the spatio-temporal distribution of rainfall and basin geomorphology into nonlinear analyses of streamflow dynamics, Adv. Water Resour., 28, 711–728, https://doi.org/10.1016/j.advwatres.2004.12.013, 2005.

Editjano, Nascimento, N., Yang, X., Makhlouf, Z., and Michel, C.: GR3J: a daily watershed model with three free parameters, Hydrolog. Sci. J., 44, 263–277, https://doi.org/10.1080/02626669909492221, 1999.

Emmanuel, I., Andrieu, H., and Tabary, P.: Evaluation of the new French operational weather radar product for the field of urban hydrology, Atmos. Res., 103, 20–32, https://doi.org/10.1016/j.atmosres.2011.06.018, 2011.

Emmanuel, I., Andrieu, H., Leblois, E., and Flahaut, B.: Temporal and spatial variability of rainfall at the urban hydrological scale, J. Hydrol., 430–431, 162–172, https://doi.org/10.1016/j.jhydrol.2012.02.013, 2012.

Faures, J., Goodrich, D. C., Woolhiser, D. A., and Sorooshian, S.: Impact of small-scale spatial rainfall variability on runoff modeling, J. Hydrol., 173, 309–326, https://doi.org/10.1016/0022-1694(95)02704-S, 1995.

Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development, Water Resour. Res., 47, 1–13, https://doi.org/10.1029/2010WR010174, 2011.

Finnerty, B., Smith, M. B., Seo, D., Koren, V., and Moglen, G.: Space-time scale sensitivity of the Sacramento model to radar-gage precipitation inputs, J. Hydrol., 203, 21–38, https://doi.org/10.1016/S0022-1694(97)00083-8, 1997.

Götzinger, J. and Bárdossy, A.: Comparison of four regionalisation methods for a distributed hydrological model, J. Hydrol., 333, 374–384, https://doi.org/10.1016/j.jhydrol.2006.09.008, 2007.

Gupta, H. V, Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.

Gupta, H. V., Perrin, C., Kumar, R., Blöschl, G., Clark, M., Montanari, A., and Andréassian, V.: Large-sample hydrology: a need to balance depth with breadth, Hydrol. Earth Syst. Sci. Discuss., 10, 9147–9189, https://doi.org/10.5194/hessd-10-9147-2013, 2013.

Henderson, F. M.: Open Channel Flow, Macmillan, Prentice Hall, New York, 1966.

Javelle, P., Fouchier, C., Arnaud, P., and Lavabre, J.: Flash flood warning at ungauged locations using radar rainfall and antecedent soil moisture estimations, J. Hydrol., 394, 267–274, https://doi.org/10.1016/j.jhydrol.2010.03.032, 2010.

Kampf, S. K. and Burges, S. J.: A framework for classifying and comparing distributed hillslope and catchment hydrologic models, Water Resour. Res., 43, W05423, https://doi.org/10.1029/2006WR005370, 2007.

Kirchner, J. W.: Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology, Water Resour. Res., 42, W03S04, https://doi.org/10.1029/2005WR004362, 2006.

Klemeš, V.: Operational testing of hydrological simulation models/Vérification, en conditions réelles, des modèles de simulation hydrologique, Hydrolog. Sci. J., 31, 13–24, https://doi.org/10.1080/02626668609491024, 1986.

Koren, V., Finnerty, B., Schaake, J., Smith, M. B., Seo, D., and Duan, Q.: Scale dependencies of hydrologic models to spatial variability of precipitation, J. Hydrol., 217, 285–302, https://doi.org/10.1016/S0022-1694(98)00231-5, 1999.

Koren, V., Reed, S., Smith, M. B., Zhang, Z., and Seo, D.-J.: Hydrology laboratory research modeling system (HL-RMS) of the US national weather service, J. Hydrol., 291, 297–318, https://doi.org/10.1016/j.jhydrol.2003.12.039, 2004.

Krajewski, W. F., Lakshmi, V., Georgakakos, K. P., and Jain, S. C.: A Monte Carlo Study of Rainfall Sampling Effect on a Distributed Catchment Model, Water Resour. Res., 27, 119–128, https://doi.org/10.1029/90WR01977, 1991.

Krajewski, W. F., Villarini, G., and Smith, J. A.: RADAR – Rainfall Uncertainties, B. Am. Meteorol. Soc., 91, 87–94, https://doi.org/10.1175/2009BAMS2747.1, 2010.

Kumar, R., Samaniego, L., and Attinger, S.: Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations, Water Resour. Res., 49, 1–20, https://doi.org/10.1029/2012WR012195, 2013.

Le Moine, N.: Le bassin versant de surface vu par le souterrain: une voie d'amélioration des performances et du réalisme des modèles pluie-débit?, Ph.D. thesis, University of Pierre et Marie Curie, Paris, France, 2008.

Lerat, J.: Quels apports hydrologiques pour les modèles hydrauliques? Vers un modèle intégré de simulation des crues, Ph.D. thesis, University of Pierre et Marie Curie, Paris, France, 2009.

Lerat, J., Andréassian, V., Perrin, C., Vaze, J., Perraud, J. M., Ribstein, P., and Loumagne, C.: Do internal flow measurements improve the calibration of rainfall–runoff models?, Water Resour. Res., 48, W02511, https://doi.org/10.1029/2010WR010179, 2012.

Lindström, G., Johansso, B., Persson, M., Gardelin, M., and Bergström, S.: Development and test of the distributed HBV-96 hydrological model, J. Hydrol., 201, 272–288, 1997.

Liu, J., Chen, X., Wu, J., Zhang, X., Feng, D., and Xu, C.-Y.: Grid parameterization of a conceptual distributed hydrological model through integration of a sub-grid topographic index: necessity and practicability, Hydrolog. Sci. J., 57, 282–297, https://doi.org/10.1080/02626667.2011.645823, 2012.

Mathevet, T., Michel, C., Andréassian, V., and Perrin, C.: A bounded version of the Nash-sutcliffe criterion for better model assessment on large sets of basins, IAHS Red Books Series, 307, 211–219, 2006.

Merz, R. and Blöschl, G.: A regional analysis of event runoff coefficients with respect to climate and catchment characteristics in Austria, Water Resour. Res., 45, W01405, https://doi.org/10.1029/2008WR007163, 2009.

Merz, R., Blöschl, G., and Parajka, J.: Spatio-temporal variability of event runoff coefficients, J. Hydrol., 331, 591–604, https://doi.org/10.1016/j.jhydrol.2006.06.008, 2006.

Merz, R., Parajka, J., and Blöschl, G.: Scale effects in conceptual hydrological modeling, Water Resour. Res., 45, W09405, https://doi.org/10.1029/2009WR007872, 2009.

Michaud, J. and Sorooshian, S.: Effect of rainfall-sampling errors on simulations of desert flash floods, Water Resour. Res., 30, 2765, https://doi.org/10.1029/94WR01273, 1994.

Morin, E., Enzel, Y., Shamir, U., and Garti, R.: The characteristic time scale for basin hydrological response using radar data, J. Hydrol., 252, 85–99, https://doi.org/10.1016/S0022-1694(01)00451-6, 2001.

Morris, E. M. and Woolhiser, D. A.: Unsteady one-dimensional flow over a plane: Partial equilibrium and recession hydrographs, Water Resour. Res., 16, 355–360, https://doi.org/10.1029/WR016i002p00355, 1980.

Naden, P. S.: Spatial variability in flood estimation for large catchments: the exploitation of channel network structure, Hydrolog. Sci. J., 37, 53–71, 1992.

Nicòtina, L., Alessi Celegon, E., Rinaldo, A., and Marani, M.: On the impact of rainfall patterns on the hydrologic response, Water Resour. Res., 44, W12401, https://doi.org/10.1029/2007WR006654, 2008.

Norbiato, D., Borga, M., Merz, R., Blöschl, G., and Carton, A.: Controls on event runoff coefficients in the eastern Italian Alps, J. Hydrol., 375, 312–325, https://doi.org/10.1016/j.jhydrol.2009.06.044, 2009.

Obled, C., Wendling, J., and Beven, K.: The sensitivity of hydrological models to spatial rainfall patterns: an evaluation using observed data, J. Hydrol., 159=, 305–333, https://doi.org/10.1016/0022-1694(94)90263-1, 1994.

O'Callaghan, J. F. and Mark, D. M.: The extraction of drainage networks from digital elevation data, Comput. Vis. Graph. Image Proc., 28, 323–344, https://doi.org/10.1016/S0734-189X(84)80011-0, 1984.

Ogden, F. L. and Julien, P.: Runoff sensitivity to temporal and spatial rainfall variability at runoff plane and small basin scales, Water Resour. Res., 29, 2589, https://doi.org/10.1029/93WR00924, 1993.

Ogden, F. L. and Julien, P.: Runoff model sensitivity to radar rainfall resolution, J. Hydrol., 158, 1–18, https://doi.org/10.1016/0022-1694(94)90043-4, 1994.

Pechlivanidis, I. G., Mclntyre, N. R., and Wheater, H. S.: Calibration of the semi-distributed PDM rainfall–runoff model in the Upper Lee catchment, UK, J. Hydrol., 386, 198–209, https://doi.org/10.1016/j.jhydrol.2010.03.022, 2010.

Penna, D., Tromp-van Meerveld, H. J., Gobbi, A., Borga, M., and Dalla Fontana, G.: The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment, Hydrol. Earth Syst. Sci., 15, 689–702, https://doi.org/10.5194/hess-15-689-2011, 2011.

Perrin, C., Andréassian, V., Rojas Serna, C., Mathevet, T., and Le Moine, N.: Discrete parameterization of hydrological models: Evaluating the use of parameter sets libraries over 900 catchments, Water Resour. Res., 44, W08447, https://doi.org/10.1029/2007WR006579, 2008.

Pokhrel, P. and Gupta, H. V: On the ability to infer spatial catchment variability using streamflow hydrographs, Water Resour. Res., 47, W08534, https://doi.org/10.1029/2010WR009873, 2011.

Pokhrel, P., Yilmaz, K. K. and Gupta, H. V: Multiple-criteria calibration of a distributed watershed model using spatial regularization and response signatures, J. Hydrol., 418-419, 49–60, https://doi.org/10.1016/j.jhydrol.2008.12.004, 2012.

Reed, S., Koren, V., Smith, M. B., Zhang, Z., MOREDA, F., Seo, D., and Dmipparticipants, a: Overall distributed model intercomparison project results, J. Hydrol., 298, 27–60, https://doi.org/10.1016/j.jhydrol.2004.03.031, 2004.

Refsgaard, J. C. and Knudsen, J.: Operational Validation and Intercomparison of Different Types of Hydrological Models, Water Resour. Res., 32, 2189–2202, https://doi.org/10.1029/96WR00896, 1996.

Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water Resour. Res., 46, W05523, https://doi.org/10.1029/2008WR007327, 2010.

Saulnier, G. M. and Le Lay, M.: Sensitivity of flash-flood simulations on the volume, the intensity, and the localization of rainfall in the Cévennes-Vivarais region (France), Water Resour., 45, 1–9, https://doi.org/10.1029/2008WR006906, 2009.

Schaefli, B. and Gupta, H. V: Do Nash values have value?, Hydrol. Process., 21, 2075–2080, https://doi.org/10.1002/hyp.6825, 2007.

Segond, M.-L., Wheater, H. S., and Onof, C.: The significance of spatial rainfall representation for flood runoff estimation: A numerical evaluation based on the Lee catchment, UK, J. Hydrol., 347, 116–131, https://doi.org/10.1016/j.jhydrol.2007.09.040, 2007.

Seibert, J.: On the need for benchmarks in hydrological modelling, Hydrol. Process., 15, 1063–1064, https://doi.org/10.1002/hyp.446, 2001.

Shah, S., Oconnell, P., and Hosking, J.: Modelling the effects of spatial variability in rainfall on catchment response, 2. Experiments with distributed and lumped models, J. Hydrol., 175, 89–111, https://doi.org/10.1016/S0022-1694(96)80007-2, 1996.

Singh, V. P.: Effect of spatial and temporal variability in rainfall and watershed characteristics on stream flow hydrograph, Hydrol. Process., 11, 1649–1669, https://doi.org/10.1002/(SICI)1099-1085(19971015)11:123.0.CO;2-1, 1997.

Smith, M. B., Koren, V., Zhang, Z., Reed, S., Pan, J., and MOREDA, F.: Runoff response to spatial variability in precipitation: an analysis of observed data, J. Hydrol., 298, 267–286, https://doi.org/10.1016/j.jhydrol.2004.03.039, 2004.

Smith, M. B., Koren, V., Zhang, Z., Zhang, Y., Reed, S., Cui, Z., Moreda, F., Cosgrove, B. A., Mizukami, N., and Anderson, E. A.: Results of the DMIP 2 Oklahoma experiments, J. Hydrol., 418–419, 17–48, https://doi.org/10.1016/j.jhydrol.2011.08.056, 2012.

Sun, X., Mein, R., Keenan, T., and Elliott, J.: Flood estimation using radar and raingauge data, J. Hydrol., 239, 4–18, https://doi.org/10.1016/S0022-1694(00)00350-4, 2000.

Tabary, P., Dupuy, P., L'Henaff, G., Gueguen, C., Moulin, L., Laurantin, O., Merlier, C., and Soubeyroux, J.-M.: A 10-year (1997–2006) reanalysis of Quantitative Precipitation Estimation over France: methodology and first results, in: Weather radar and Hydrology, IAHS Publ., 351, 255–260, 2012.

Tarolli, M., Borga, M., Zoccatelli, D., Bernhofer, C., Jatho, N., and Janabi, F.: Rainfall Space-Time Organization and Orographic Control on Flash Flood Response: The Weisseritz Event of August 13, 2002, J. Hydrol. Eng., 18, 183–193, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000569, 2013.

Tetzlaff, D. and Uhlenbrook, S.: Significance of spatial variability in precipitation for process-oriented modelling: results from two nested catchments using radar and ground station data, Hydrol. Earth Syst. Sci., 9, 29–41, https://doi.org/10.5194/hess-9-29-2005, 2005.

Tramblay, Y., Bouvier, C., Ayral, P.-A., and Marchandise, A.: Impact of rainfall spatial distribution on rainfall-runoff modelling efficiency and initial soil moisture conditions estimation, Nat. Hazards Earth Syst. Sci., 11, 157–170, https://doi.org/10.5194/nhess-11-157-2011, 2011.

Vaze, J., Post, D. A., Chiew, F. H. S., Perraud, J.-M., Teng, J., and Viney, N. R.: Conceptual rainfall-runoff model performance with different spatial rainfall inputs, J. Hydrometeorol., 12, 1100–1112, https://doi.org/10.1175/2011JHM1340.1, 2011.

Viglione, A., Chirico, G. B., Komma, J., Woods, R., Borga, M., and Blöschl, G.: Quantifying space-time dynamics of flood event types, J. Hydrol., 394, 213–229, https://doi.org/10.1016/j.jhydrol.2010.05.041, 2010.

Winchell, M., Gupta, H. V., and Sorooshian, S.: On the simulation of infiltration- and saturation-excess runoff using radar-based rainfall estimates: Effects of algorithm uncertainty and pixel aggregation, Water Resour. Res., 34, 2655–2670, https://doi.org/10.1029/98WR02009, 1998.

Woods, R. and Sivapalan, M.: A synthesis of space-time variability in storm response: Rainfall, runoff generation, and routing, Water Resour. Res., 35, 2469–2485, https://doi.org/10.1029/1999WR900014, 1999.

Yu, Z., Lu, Q., Zhu, J., Yang, C., Jun, Q., Yang, T., Chen, X., and Sudicky, E.: Spatial and Temporal Scale Effect in Simulating Hydrologic Processes in a Watershed, J. Hydrol. Eng., 1, 99–107, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000762, 2012.

Zhang, Z., Smith, M. B., Koren, V., Reed, S., Moreda, F., Kuzmin, V. and Anderson, R.: A study of the relationship between rainfall variability and the improvement of using a distributed model, IAHS-AISH Publ., 289, 188–196, 2004.

Zoccatelli, D., Borga, M., Viglione, A., Chirico, G. B., and Blöschl, G.: Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response, Hydrol. Earth Syst. Sci., 15, 3767–3783, https://doi.org/10.5194/hess-15-3767-2011, 2011.