Wheat ear counting in-field conditions: high throughput and low-cost approach using RGB images
Tóm tắt
The number of ears per unit ground area (ear density) is one of the main agronomic yield components in determining grain yield in wheat. A fast evaluation of this attribute may contribute to monitoring the efficiency of crop management practices, to an early prediction of grain yield or as a phenotyping trait in breeding programs. Currently the number of ears is counted manually, which is time consuming. Moreover, there is no single standardized protocol for counting the ears. An automatic ear-counting algorithm is proposed to estimate ear density under field conditions based on zenithal color digital images taken from above the crop in natural light conditions. Field trials were carried out at two sites in Spain during the 2014/2015 crop season on a set of 24 varieties of durum wheat with two growing conditions per site. The algorithm for counting uses three steps: (1) a Laplacian frequency filter chosen to remove low and high frequency elements appearing in an image, (2) a Median filter to reduce high noise still present around the ears and (3) segmentation using Find Maxima to segment local peaks and determine the ear count within the image. The results demonstrate high success rate (higher than 90%) between the algorithm counts and the manual (image-based) ear counts, and precision, with a low standard deviation (around 5%). The relationships between algorithm ear counts and grain yield was also significant and greater than the correlation with manual (field-based) ear counts. In this approach, results demonstrate that automatic ear counting performed on data captured around anthesis correlated better with grain yield than with images captured at later stages when the low performance of ear counting at late grain filling stages was associated with the loss of contrast between canopy and ears. Developing robust, low-cost and efficient field methods to assess wheat ear density, as a major agronomic component of yield, is highly relevant for phenotyping efforts towards increases in grain yield. Although the phenological stage of measurements is important, the robust image analysis algorithm presented here appears to be amenable from aerial or other automated platforms.
Tài liệu tham khảo
Pask A, Pietragalla J, Mullan D, Reynolds M, editors. Physiological breeding II: a field guide to wheat phenotyping. Mexico, DF: CIMMYT; 2012.
Ferrante A, Cartelle J, Savin R, Slafer GA. Yield determination, interplay between major components and yield stability in a traditional and a contemporary wheat across a wide range of environments. Food Crop Res. 2017;203:114–27.
Slafer GA, Calderini DF, Miralles DJ. Yield components and compensation in wheat: opportunities for further increasing yield potencial. In: Reynolds MP, Rajaram S, McNab A, editors. Increasing yield potential wheat: breaking the barriers. Mexico: CIMMYT International Symposium; 1996. p. 101–33.
Slafer GA, Savin R, Sadras VO. Coarse and fine regulation of wheat yield components in response to genotype and environment. Food Crop Res. 2014;157:71–83.
Tambussi EA, Bort J, Guiamet JJ, Nogués S, Araus JL. The photosynthetic role of ears in C3 cereals: metabolism, water use efficiency and contribution to grain yield. Crit Rev Plant Sci. 2007;26:1–16.
Zhu Y, Cao Z, Lu H, Li Y, Xiao Y. In-field automatic observation of wheat heading stage using computer vision. Biosyst Eng. 2016;143:28–41.
Cointault F, Guerin D, Guillemin J, Chopinet B. In-field Triticum aestivum ear counting using colour-texture image analysis. N Z J Crop Hortic Sci. 2008;36:117–30.
Liu T, Sun C, Wang L, Zhong X, Zhu X, Guo W. In-field wheatear counting based on image processing technology. Nongye Jixie Xuebao/Trans Chin Soc Agric Mach. 2014;45:282–90.
Dornbusch T, Hawkesford M, Jansen M, Nagel K, Niehaus B, Paulus S, et al. Digital field phenotyping by LemnaTec. Aachen: LemnaTec; 2015.
Erikson M. Species classification of individually segmented tree crowns in high-resolution aerial images using radiometric and morphologic image measures. Remote Sens Environ. 2004;91:469–77.
Leckie DG, Gougeon FA, Tinis S, Nelson T, Burnett CN, Paradine D. Automated tree recognition in old growth conifer stands with high resolution digital imagery. Remote Sens Environ. 2005;94:311–26.
Leckie DG, Gougeon FA, Walsworth N, Paradine D. Stand delineation and composition estimation using semi-automated individual tree crown analysis. Remote Sens Environ. 2003;85:355–69.
Pouliot DA, King DJ, Bell FW, Pitt DG. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sens Environ. 2002;82:322–34.
Wulder M, Niemann KO, Goodenough DG. Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery. Remote Sens Environ. 2000;73:103–14.
Font D, Pallejà T, Tresanchez M, Teixidó M, Martinez D, Moreno J, et al. Counting red grapes in vineyards by detecting specular spherical reflection peaks in RGB images obtained at night with artificial illumination. Comput Electron Agric. 2014;108:105–11.
Stajnko D, Lakota M, Hočevar M. Estimation of number and diameter of apple fruits in an orchard during the growing season by thermal imaging. Comput Electron Agric. 2004;42:31–42.
Tian LF, Slaughter DC. Environmentally adaptive segmentation algorithm for outdoor image segmentation. Comput Electron Agric. 1998;21:153–68.
Arroyo J, Guijarro M, Pajares G. An instance-based learning approach for thresholding in crop images under different outdoor conditions. Comput Electron Agric. 2016;127:669–79.
Guijarro M, Pajares G, Riomoros I, Herrera PJ, Burgos-Artizzu XP, Ribeiro A. Automatic segmentation of relevant textures in agricultural images. Comput Electron Agric. 2011;75:75–83.
Li H, Lee WS, Wang K. Identifying blueberry fruit of different growth stages using natural outdoor color images. Comput Electron Agric. 2014;106:91–101.
Payne AB, Walsh KB, Subedi PP, Jarvis D. Estimation of mango crop yield using image analysis – segmentation method. Comput Electron Agric. 2013;91:57–64.
Payne A, Walsh K, Subedi P, Jarvis D. Estimating mango crop yield using image analysis using fruit at “stone hardening” stage and night time imaging. Comput Electron Agric. 2014;100:160–7.
Ruiz-Ruiz G, Gómez-Gil J, Navas-Gracia LM. Testing different color spaces based on hue for the environmentally adaptive segmentation algorithm (EASA). Comput Electron Agric. 2009;68:88–96.
Aquino A, Millan B, Gutiérrez S, Tardáguila J. Grapevine flower estimation by applying artificial vision techniques on images with uncontrolled scene and multi-model analysis. Comput Electron Agric. 2015;119:92–104.
Chang YK, Zaman Q, Farooque AA, Schumann AW, Percival DC. An automated yield monitoring system II for commercial wild blueberry double-head harvester. Comput Electron Agric. 2012;81:97–103.
Ji W, Zhao D, Cheng F, Xu B, Zhang Y, Wang J. Automatic recognition vision system guided for apple harvesting robot. Comput Electr Eng. 2012;38:1186–95.
Maldonado W, Barbosa JC. Automatic green fruit counting in orange trees using digital images. Comput Electron Agric. 2016;127:572–81.
Zhou R, Damerow L, Sun Y, Blanke MM. Using colour features of cv. “Gala” apple fruits in an orchard in image processing to predict yield. Precis Agric. 2012;13:568–80.
Jensen JR. Remote sensing of the environment: an earth resource perspective. Upper Saddle River: Pearson Prentice Hall; 2007.
Susstrunk S, Buckley R, Swen S. Standard RGB color spaces. In: 7th color imaging conference on final progress proceedings on society for imaging science and technology; 1999. p. 127–34.
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.
Bourne R. Image filters., Fundamentals of digital imaging in medicine. London: Springer; 2010. p. 137–72.
Cappello A. Estensione del software ImageJ con tecniche di enhancement nel dominio della frequenza. Dipartimento di Matematica e Informatica. Corso di Laurea Specialistica in Informatica. Università degli Studi di Catania. 2005. p. 1–23.
Smołka B. Nonlinear techniques of noise reduction in digital color images. Gliwice: Wydawnictwo Politechniki Śląskiej; 2004.
Das A. Image enhancement in spatial domain., Guide to signals and patterns in image processing. Cham: Springer; 2015. p. 43–92.
Ko S-J, Lee YH. Center weighted median filters and their applications to image enhancement. IEEE Trans Circuits Syst. 1991;38:984–93.
Jähne B. Digital image processing. Berlin: Springer; 2005.
Tiago F, Rasband W. ImageJ user guide. Bethesda: National Institute of Mental Health; 2012.
Di Rienzo JA, Casanovas F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat. Applied Statistics and Biometry of the Agricultural College. National University of Córdoba. Grupo InfoStat, FCA. Universidad Nacional de Cordoba, Argentina; 2008.
Cointault F, Journaux L, Rabatel G, Germain C, Ooms D, Destain M-F, et al. Texture, color and frequential proxy-detection image processing for crop characterization in a context of precision agriculture. In: Godwin A, editor. Agricultural science. InTech: Rijeka; 2012. p. 49–70.
Abbad H, El Jaafari S, Bort J, Araus JL. Comparative relationship of the flag leaf and the ear photosynthesis with the biomass and grain yield of durum wheat under a range of water conditions and different genotypes. Agronomie. 2004;24:19–28.
Slafer GA, Savin R. Physiology of crop yield. In: Goodman RE (ed) Encyclopedia of plant and crop science. New York: Taylor & Francis; 2007. p. 1–4.