What range of extra-cardiac conduit flow velocity is detectable intraoperatively following the completion of a total cavo-pulmonary connection?
Tóm tắt
Very few studies have investigated the blood flow velocity from the inferior vena cava (IVC) to the pulmonary artery following the Fontan operation using an extra-cardiac conduit (ECC). No studies at all have investigated the velocity immediately after the circulation is established. The purpose of this retrospective study was to find an acceptable flow velocity at the ECC following the completion of a total cavo-pulmonary connection (TCPC) via transesophageal echocardiography. We measured the mean velocity (m-V) of the blood flow proximal to the anastomosis between the IVC and ECC in eight patients and compared the results with theoretically predicted values based on assumptions regarding the cardiac output, the ratio of the IVC flow to the superior vena cava flow, and the cross-sectional form of the ECC. Mean velocities ranging from about 15 to 60 cm/s were detected in the absence of any observable stenosis. The measured m-V was significantly faster than the predicted value in our study, both collectively and in every patient individually. The shrinking and compression of the ECC might account for the faster velocities measured in our cases. The observed range of m-V at the ECC, about 15-60cm/s, may be acceptable for the establishment of TCPC circulation.
Tài liệu tham khảo
Fogel MA, Weinberg PM, Hoydu A, Hubbard A, Rychik J, Jacobs M, Fellows KE, Haselgrove J. The nature of flow in the systemic venous pathway measured by magnetic resonance blood tagging in patients having the Fontan operation. J Thorac Cardiovasc Surg. 1997;114:1032–41.
Salim MA, DiSessa TG, Arheart KL, Alpert BS. Contribution of superior vena cava flow to total cardiac output in children. Circulation. 1995;92:1860–5.
Mosbahi S, Mickaily-Huber E, Charbonnier D, Hullin R, Burki M, Ferrari E, von Segesser LK, Berdajs DA. Computational fluid dynamics of the right ventricular outflow tract and of the pulmonary artery: a bench model of flow dynamics. Interact Cardiovasc Thorac Surg. 2014;19:611–6.
Gewillig M, Brown SC, Eyskens B, Heying R, Ganame J, Budts W, Gerche AL, Gorenflo M. The Fontan circulation: who controls cardiac output? Interact Cardiovasc Thorac Surg. 2010;10:428–33.
Nakazawa M, Nojima K, Okuda H, Imai Y, Nakanishi T, Kurosawa H, Takao A. Flow dynamics in the main pulmonary artery after Fontan procedure in patients with tricuspid atresia or single ventricle. Circulation. 1987;75:1117–23.
Williams DB, Kiernan PD, Schaff HV, Marsh HM, Danielson GK. The hemodynamic response to dopamine and nitroprusside following right atrium-pulmonary artery bypass (Fontan procedure). Ann Thorac Surg. 1982;34:51–7.
Shiraishi S, Yagihara T, Kagisaki K, Hagino I, Ohuchi H, Kobayashi J, Kitamura S. Impact of age at Fontan completion on postoperative hemodynamics and long-term aerobic exercise capacity in patients with dominant left ventricle. Ann Thorac Surg. 2009;87:555–61.
Bezuska L, Lebetkevicius V, Lankutis K, Sudikiene R, Sirvydis VJ, Tarutis V. Fontan completion for younger than 3 years of age: outcome in patients with functional single ventricle. Pediatr Cardiol. 2015;36:1680–4.