Những yếu tố nào thúc đẩy người tham gia cộng đồng trực tuyến đóng góp một cách nhất quán? Nghiên cứu trường hợp người dùng Stackoverflow

Springer Science and Business Media LLC - Tập 42 - Trang 10468-10481 - 2022
Sohaib Mustafa1, Wen Zhang1, Muhammad Mateen Naveed1
1College of Economics and Management, Beijing University of Technology, Beijing, China

Tóm tắt

Các cộng đồng hỏi đáp trực tuyến (Q&A) là những nền tảng phổ biến và nổi tiếng để học hỏi và chia sẻ kiến thức, và chúng rất hữu ích cho mọi người tìm kiếm kiến thức. Sự đóng góp kiến thức thấp là một vấn đề nghiêm trọng đối với sự bền vững và tương lai của những nền tảng này. Động lực của những người dùng không tích cực tham gia vào các cộng đồng Q&A là một thách thức thực sự. Dựa trên lý thuyết nhận thức xã hội và lý thuyết trao đổi xã hội, chúng tôi đã nghiên cứu các mẫu đóng góp kiến thức của những người dùng StackOverflow tích cực và nhất quán trong suốt mười một năm qua. Chúng tôi đã sử dụng phương pháp ước lượng Mô men tổng quát cho sự khác biệt để ước lượng mô hình được đề xuất. Kết quả cho thấy rằng sự hồi đáp kiến thức và tương tác xã hội có ảnh hưởng tích cực, trong khi việc tìm kiếm kiến thức của những người dùng tích cực và nhất quán lại có ảnh hưởng tiêu cực đến sự đóng góp kiến thức. Sự công nhận và phủ định từ bạn bè có ảnh hưởng tích cực và tiêu cực một phần đến sự đóng góp kiến thức của người dùng. Nghiên cứu này cung cấp các gợi ý lý thuyết và thực tiễn để khuyến khích mọi người đóng góp kiến thức của mình cho các cộng đồng Q&A trực tuyến.

Từ khóa

#cộng đồng hỏi đáp trực tuyến #đóng góp kiến thức #StackOverflow #động lực người dùng #lý thuyết nhận thức xã hội #lý thuyết trao đổi xã hội

Tài liệu tham khảo

Alasmari, A., & Zhou, L. (2019). How multimorbid health information consumers interact in an online community Q&A platform. International Journal of Medical Informatics, 131, 103958. https://doi.org/10.1016/j.ijmedinf.2019.103958 Anderson, E. S., Winett, R. A., & Wojcik, J. R. (2007). Self-regulation, self-efficacy, outcome expectations, and social support: Social cognitive theory and nutrition behavior. Annals of Behavioral Medicine, 34(3), 304–312. https://doi.org/10.1007/BF02874555 Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The Review of Economic Studies, 58(2), 277–297. https://doi.org/10.2307/2297968%J Bandura, A. J. E., & C., N. J. (1986). Prentice-Hall series in social learning theory. Social foundations of thought and action: A social cognitive theory. Bond, S. R. (2002). Dynamic panel data models: a guide to micro data methods and practice. Portuguese Economic Journal, 1(2), 141–162. https://doi.org/10.1007/s10258-002-0009-9 Burke, M., Marlow, C., & Lento, T. (2009). Feed me: motivating newcomer contribution in social network sites. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 945–954): Association for Computing Machinery. Chang, H. H., & Chuang, S. S. (2011). Social capital and individual motivations on knowledge sharing: Participant involvement as a moderator. Information & Management, 48(1), 9–18. https://doi.org/10.1016/j.im.2010.11.001 Chen, L. (2019). The Impact of the Content of Online Customer Reviews on Customer Satisfaction. Paper presented at the Conference Companion Publication of the 2019 on Computer Supported Cooperative Work and Social Computing. Chen, L., Baird, A., & Straub, D. (2019). Why do participants continue to contribute? Evaluation of usefulness voting and commenting motivational affordances within an online knowledge community. Decision Support Systems, 118, 21–32. https://doi.org/10.1016/j.dss.2018.12.008 Chen, D. (2021). 27/01/2022). When Correlation Does Not Imply Causation: Why your gut microbes may not (yet) be a silver bullet to all your problems. Retrieved from https://sitn.hms.harvard.edu/flash/2021/when-correlation-does-not-imply-causation-why-your-gut-microbes-may-not-yet-be-a-silver-bullet-to-all-your-problems/. Accessed 30 Dec 2021. Chen, L., Baird, A., & Straub, D. (2021). The impact of hierarchical privilege levels and non-hierarchical incentives on continued contribution in online Q&A communities: A motivational model of gamification goals. Decision Support Systems, 113667. https://doi.org/10.1016/j.dss.2021.113667 Dalkir, K. (2013). Knowledge management in theory and practice. Routledge. Deci, E. L., Koestner, R., & Ryan, R. M. (2001). Extrinsic rewards and intrinsic motivation in education. Reconsidered Once Again, 71(1), 1–27. https://doi.org/10.3102/00346543071001001 Dong, L., Huang, L., Hou, J., & Liu, Y. (2020). Continuous content contribution in virtual community: The role of status-standing on motivational mechanisms. Decision Support Systems, 132. https://doi.org/10.1016/j.dss.2020.113283 Emerson, R. M. (1976). Social exchange theory. 2(1),335–362. https://doi.org/10.1146/annurev.so.02.080176.002003 Fang, C., & Zhang, J. (2019). Users’ continued participation behavior in social Q&A communities: A motivation perspective. Computers in Human Behavior, 92, 87–109. https://doi.org/10.1016/j.chb.2018.10.036 Gee, W. B., & Young-Gul, K. (2002). Breaking the myths of rewards: An exploratory study of attitudes about knowledge sharing. Information Resources Management Journal (IRMJ), 15(2), 14–21. https://doi.org/10.4018/irmj.2002040102 Guan, T., Wang, L., Jin, J., & Song, X. (2018). Knowledge contribution behavior in online Q&A communities: An empirical investigation. Computers in Human Behavior, 81, 137–147. https://doi.org/10.1016/j.chb.2017.12.023 Hao, Q., Yang, W., & Shi, Y. (2019). Characterizing the relationship between conscientiousness and knowledge sharing behavior in virtual teams: An interactionist approach. Computers in Human Behavior, 91, 42–51. https://doi.org/10.1016/j.chb.2018.09.035 Hardin, G. (1968). The tragedy of the commons. 162(3859), 1243–1248. https://doi.org/10.1126/science.162.3859.1243 Hsu, M. H., Ju, T. L., Yen, C. H., & Chang, C. M. (2007). Knowledge sharing behavior in virtual communities: The relationship between trust, self-efficacy, and outcome expectations. International Journal of Human-Computer Studies, 65(2), 153–169. https://doi.org/10.1016/j.ijhcs.2006.09.003 Huysman, M. (2002). Organizational Learning through Communities of Practice, a Social Constructivist Approach. Paper presented at the Organizational Knowledge, Learning and Capabilities, 3rd European Conference. Athens, Greece: Athens Laboratory of Business Administration, Athens University of Economics. Jin, J., Li, Y., Zhong, X., & Zhai, L. (2015). Why users contribute knowledge to online communities: An empirical study of an online social Q&A community. Information & Management, 52(7), 840–849. https://doi.org/10.1016/j.im.2015.07.005 Jin, J., Yan, X., Li, Y., & Li, Y. (2016). How users adopt healthcare information: An empirical study of an online Q&A community. International Journal of Medical Informatics, 86, 91–103. https://doi.org/10.1016/j.ijmedinf.2015.11.002 Liao, J., Dong, X., & Guo, Y. (2020). Examining knowledge contribution in firm- versus consumer-hosted virtual brand community. Electronic Commerce Research and Applications, 41, 100963. https://doi.org/10.1016/j.elerap.2020.100963 Liou, D. K., Chih, W. H., Yuan, C. Y., & Lin, C. Y. (2016). The study of the antecedents of knowledge sharing behavior. Internet Research, 26(4), 845–868. https://doi.org/10.1108/IntR-10-2014-0256 Liu, C. C., Chen, S. Y., & Learning. (2005). Determinants of knowledge sharing of e-learners. International Journal of Innovation Studies, 2(4), 434–445. https://doi.org/10.1504/IJIL.2005.006665 Lou, J., Fang, Y., Lim, K., & Peng, J. (2013). Contributing high quantity and quality knowledge to online Q&A communities. Journal of the American Society for Information Science and Technology, 64. https://doi.org/10.1002/asi.22750 Luo, C., Lan, Y., Luo, X., & Li, H. (2021). The effect of commitment on knowledge sharing: An empirical study of virtual communities. Technological Forecasting and Social Change, 163. https://doi.org/10.1016/j.techfore.2020.120438 Mattke, J., Maier, C., Reis, L., & Weitzel, T. (2020). Herd behavior in social media: The role of Facebook likes, strength of ties, and expertise. Information & Management, 57(8), 103370. https://doi.org/10.1016/j.im.2020.103370 Miller, N. E., & Dollard, J. (1941). Social learning and imitation. Yale University Press. Mustafa, S., Sohail, M. T., Alroobaea, R., Rubaiee, S., Anas, A., Othman, A. M., & Nawaz, M. (2022a). Éclaircissement to understand consumers’ decision-making psyche and gender effects, a fuzzy set qualitative comparative analysis. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022a.920594 Mustafa, S., Zhang, W., Shehzad, M. U., Anwar, A., & Rubakula, G. (2022b). Does health consciousness matter to adopt new technology? An integrated model of UTAUT2 with SEM-fsQCA approach. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022b.836194 Pindyck, H., & Rubinfeld, J. (1981). Econometric methods and econometric models. McGraw Hill. Rozin, P., & Royzman, E. B. (2001). Negativity bias, negativity dominance, and contagion. 5(4), 296–320. https://doi.org/10.1207/s15327957pspr0504_2 Serban, A. M., & Luan, J. (2002). Overview of knowledge management. New directions for institutional research, 2002(113), 5–16. Shi, C., Hu, P., Fan, W., & Qiu, L. (2021). How learning effects influence knowledge contribution in online Q&A community? A social cognitive perspective. Decision Support Systems, 149, 113610. https://doi.org/10.1016/j.dss.2021.113610 Simon, F., & Tossan, V. (2018). Does brand-consumer social sharing matter? A relational framework of customer engagement to brand-hosted social media. Journal of Business Research, 85, 175–184. https://doi.org/10.1016/j.jbusres.2017.12.050 Tajfel, H., & Turner, J. (1986). The social identity theory of intergroup behavior. In S. Worchel and WG Austing (Eds.) Psychology of intergroup relations, 2nd, 7–24. Vaughan, B. (2020). How online communities are saving the world. Retrieved from https://www.forbes.com/sites/benjaminvaughan/2020/05/13/how-online-communities-are-saving-the-world/?sh=4e3a2a2c9f3c. Accessed 27 Jan 2022. Wang, N., Liu, Y., & Xiao, S. (2022). Which feedback matters? The role of expressions and valence in continuous high-quality knowledge contribution in the online Q&A community. Decision Support Systems, 113750. https://doi.org/10.1016/j.dss.2022.113750 Wasko, M. M., & Faraj, S. (2005). Why should I share? Examining social capital and knowledge contribution in electronic networks of practice. MIS Quarterly, 29(1), 35–57. https://doi.org/10.2307/25148667 Wiegand, D. M., & Geller, E. S. (2005). Connecting positive psychology and organizational behavior management. Journal of Organizational Behavior Management, 24(1–2), 3–25. https://doi.org/10.1300/J075v24n01_02 Wiertz, C., & de Ruyter, K. (2007). Beyond the call of duty: Why customers contribute to firm-hosted commercial online communities. Organization Studies, 28(3), 347–376. https://doi.org/10.1177/0170840607076003 Zhang, Y., Zhang, M., Luo, N., Wang, Y., & Niu, T. (2019). Understanding the formation mechanism of high-quality knowledge in social question and answer communities: A knowledge co-creation perspective. International Journal of Information Management, 48, 72–84. https://doi.org/10.1016/j.ijinfomgt.2019.01.022 Zhao, L., Detlor, B., & Connelly, C. E. (2016). Sharing knowledge in social Q&A sites: The unintended consequences of extrinsic motivation. Journal of Management Information Systems, 33(1), 70–100. https://doi.org/10.1080/07421222.2016.1172459