What have animal models taught us about the p53 pathway?

Journal of Pathology - Tập 205 Số 2 - Trang 206-220 - 2005
Guillermina Lozano1, Gerard P. Zambetti2
1Department of Molecular Genetics, Section of Cancer Genetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
2St. Jude Children Research Hospital

Tóm tắt

AbstractMouse models have provided important insight into the in vivo significance of upstream and downstream signals that regulate the p53 tumour suppressor. One important lesson learned from these models is that negative regulators of p53 are critical in vivo modulators of p53 activity. Additionally, upstream regulators of p53 activity, such as p19Arf and Atm, are themselves critical tumour modifiers/suppressors. The presence of multiple positive regulators of p53 and numerous downstream targets indicates a redundancy that ensures activation of the p53 pathway. Importantly, p53 plays a prominent role as a tumour suppressor in vivo by virtue of its ability both to block cell cycle progression and to induce cell death. Finally, different p53 mutants have different properties in vivo. Three missense mutations have been generated at the p53 locus and all three exhibit unique differences in their ability to contribute to the tumour phenotype. Clearly, determining the levels of p53 inhibitors, and the typing of p53 mutations in human tumours should be performed to determine the best avenue for treatment. Copyright © 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Từ khóa


Tài liệu tham khảo

10.1002/gene.10068

10.1002/(SICI)1526-968X(200002)26:2<99::AID-GENE1>3.0.CO;2-B

10.1016/S1534-5807(03)00399-X

10.1038/35074129

10.1016/S1535-6108(03)00220-4

10.1038/356215a0

10.1007/s000180050269

10.1006/scbi.1996.0035

10.1006/scbi.1998.0096

10.1002/(SICI)1096-9896(199901)187:1<112::AID-PATH250>3.0.CO;2-3

10.1016/0092-8674(92)90644-R

Iwakuma T, 2003, MDM2, an introduction, Mol Cancer Res, 1, 993

10.1002/j.1460-2075.1993.tb05678.x

10.1101/gad.7.7a.1126

10.1038/378206a0

10.1038/378203a0

Chavez‐Reyes A, 2003, Switching mechanisms of cell death in mdm2‐ and mdm4‐null mice by deletion of p53 downstream targets, Cancer Res, 63, 8664

10.1002/gene.10066

10.1002/gene.10035

10.1128/MCB.23.2.462-473.2003

10.1093/emboj/cdg133

10.1002/(SICI)1097-4644(19970301)64:3<343::AID-JCB1>3.0.CO;2-V

10.1073/pnas.95.26.15608

10.1016/j.cell.2004.11.022

10.1002/j.1460-2075.1996.tb00919.x

Finch RA, 2002, mdmx is a negative regulator of p53 activity in vivo, Cancer Res, 62, 3221

10.1128/MCB.22.15.5527-5538.2002

10.1038/ng714

Riemenschneider MJ, 1999, Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification, Cancer Res, 59, 6091

10.1128/MCB.24.13.5835-5843.2004

Ramos YF, 2001, Aberrant expression of HDMX proteins in tumor cells correlates with wild‐type p53, Cancer Res, 61, 1839

10.1146/annurev.immunol.15.1.177

10.1126/science.7792600

10.1016/0092-8674(92)90593-2

10.1038/nature01368

10.1038/35043058

10.1101/gad.11.24.3471

10.1101/gad.12.18.2831

10.1101/gad.10.19.2411

Westphal CH, 1997, Genetic interactions between atm and p53 influence cellular proliferation and irradiation‐induced cell cycle checkpoints, Cancer Res, 57, 1664

10.1038/ng1297-453

10.1126/science.280.5366.1089

10.1002/0471656437.ch19

10.1016/S0092-8674(00)80416-X

10.1128/MCB.24.3.976-984.2004

10.1016/S1535-6108(03)00110-7

10.1126/science.274.5289.948

10.1101/gad.14.3.289

10.1073/pnas.96.24.13777

10.1126/science.286.5449.2528

10.1126/science.1978757

10.1038/348747a0

10.1038/ng879

10.1086/341943

10.1093/emboj/cdf506

10.1128/MCB.22.18.6521-6532.2002

10.1038/sj.emboj.7600363

10.1016/S1097-2765(01)00176-9

10.1073/pnas.95.6.2834

10.1073/pnas.95.11.6399

10.1128/MCB.23.3.908-915.2003

10.1128/MCB.24.20.8884-8894.2004

10.1038/sj.onc.1207793

10.1038/35096061

10.1016/S0092-8674(00)81401-4

10.1016/S0092-8674(00)81400-2

10.1073/pnas.95.14.8292

10.1016/S0092-8674(00)80452-3

10.1101/gad.12.15.2424

10.1101/gad.12.15.2434

Kamijo T, 1999, Tumor spectrum in ARF‐deficient mice, Cancer Res, 59, 2217

10.1016/S0092-8674(00)81079-X

10.1038/35092584

Satyamoorthy K, 2003, p16INK4A and familial melanoma, Methods Mol Biol, 222, 185

10.1101/gad.13.20.2658

10.1101/gad.13.20.2670

10.1038/365017a0

10.1002/1521-1878(200008)22:8<728::AID-BIES6>3.0.CO;2-B

10.1073/pnas.95.5.2302

10.1038/sj.onc.1201932

10.1128/MCB.22.12.4280-4292.2002

10.1016/S1097-2765(01)00367-7

10.1038/sj.onc.1206177

10.1038/90108

10.1038/8743

10.1073/pnas.95.23.13869

10.1101/gad.11.10.1226

10.1038/ng747

Greenblatt MS, 2001, TP53 mutations in breast cancer associated with BRCA1 or BRCA2 germ‐line mutations: distinctive spectrum and structural distribution, Cancer Res, 61, 4092

10.1158/1541-7786.371.2.7

10.1038/35043127

10.1038/19531

10.1016/S0092-8674(00)81646-3

10.1038/416560a

10.1016/j.ccr.2004.06.005

10.1111/j.1365-313X.2004.02040.x

Miyashita T, 1994, Tumor suppressor p53 is a regulator of bcl‐2 and bax gene expression in vitro and in vivo, Oncogene, 9, 1799

10.1016/0092-8674(95)90412-3

10.1038/38525

10.1126/science.270.5233.96

10.1038/362849a0

10.1038/362847a0

10.1073/pnas.97.2.889

10.1016/S1097-2765(00)00136-2

10.1016/S1097-2765(01)00214-3

10.1016/S1097-2765(01)00213-1

10.1073/pnas.201208798

10.1073/pnas.2627984100

10.1126/science.1090072

10.1016/S1535-6108(03)00244-7

10.1074/jbc.M307469200

10.1038/ng1282

10.1073/pnas.0403286101

10.1016/S1097-2765(03)00050-9

10.1126/science.1092734

10.1126/science.288.5468.1053

10.1101/gad.1103603

10.1016/S0955-0674(02)00381-2

10.1038/35078527

10.1126/science.284.5411.156

10.1038/35051606

10.1016/S0092-8674(00)81477-4

10.1016/S0092-8674(00)81733-X

10.1038/nature01101

10.1083/jcb.200310041

10.1101/gad.14.6.704

10.1016/j.cub.2003.10.055

10.1128/MCB.16.9.4952

10.1002/j.1460-2075.1996.tb00418.x

10.1016/0092-8674(93)90499-G

10.1038/377552a0

10.1016/0092-8674(95)90039-X

Martin‐Caballero J, 2001, Tumor susceptibility of p21(Waf1/Cip1)‐deficient mice, Cancer Res, 61, 6234

10.1182/blood.V84.11.3781.bloodjournal84113781

Gao X, 1995, Somatic mutations of the WAF1/CIP1 gene in primary prostate cancer, Oncogene, 11, 1395

10.1073/pnas.052713099

10.1002/humu.10186

10.1126/science.8023157

10.1016/0092-8674(89)90045-7

Hinds PW, 1990, Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the ‘hot spot’ mutant phenotypes, Cell Growth Differ, 1, 571

10.1038/ng0593-42

10.1002/j.1460-2075.1993.tb05744.x

Sigal A, 2000, Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome, Cancer Res, 60, 6788

10.1073/pnas.97.8.4174

10.1016/j.cell.2004.11.006

10.1016/j.cell.2004.11.004

10.1016/S0092-8674(03)00193-4

10.1038/nature02514