What factors contribute to high mechanical strength of tabia? Case study of the tabia from coastal forts sites at Zhejiang, China

Springer Science and Business Media LLC - Tập 8 - Trang 1-15 - 2020
Cuisong Zhang1, Bingjian Zhang1,2, Biao Cui3, Guocong Lin4
1Department of Cultural Heritage and Museology, Zhejiang University, Hangzhou, People's Republic of China
2Department of Chemistry, Zhejiang University, Hangzhou, People’s Republic of China
3Zhejiang Provincial Institute of Cultural Relics and Archaeology, Hangzhou, People’s Republic of China
4Ningbo Institute of Cultural Relics and Archaeology, Ningbo, People’s Republic of China

Tóm tắt

Tabia is one of the most widely used construction materials in ancient China. In this work, the tabia samples from three coastal defense fort sites at Zhejiang Province, China, we analyzed to determine their component composition and physiochemical properties. The results show that these tabia samples exhibited high compressive strength, which could be as high as 4–9 MPa. Furthermore, the systematic analysis demonstrated that the high compressive strength was related to the following factors: (1) a suitable mass ratio of sand, lime, and clay; (2) an appropriate sand particle size ratio; and (3) the formation of hydrated calcium silicate (C-S-H). Moreover, sticky rice was also detected in the tabia samples. These findings are fundamentally important, which could be beneficial to further study of the craftsmanship of the coastal defense forts and could further provide essential guidance for the protection and restoration of the tabia relics.

Tài liệu tham khảo

Liu X, Yang S, Zhang B. Studies of rammed earthen foundations from the archaeological site of the Shang city at Zhengzhou. Sci Conserv Archaeol. 2016;28(4):106–12 (in Chinese). Shui B. Preliminary study on lime-soil in ancient rammed earth construction site in China. Master’s Thesis, Northwest University (Xi’an). 2012. (in Chinese). Yao Q, Lv D. On historical evolution of the ancient Tongwan city & its architecture. J Yan’an Univ (Soc Sci Ed). 2004;26(2):126–8 (in Chinese). Cen D, Chen X, Wang Z. Excavation report of Xinwuwan tomb in Xishui county. Jianghan Archaeol. 2011;S1:66–73 (in Chinese). Pu S. The Yuanzitai North Yan tomb in Chaoyang county Liaoning province. Cult Relics. 1994;11:43–7 (in Chinese). Tie F. Conservation and restoration of wall paintings of early Western Han Dynasty—investigation of conservation history and actuality. Sci Conserv Archaeol. 2004;16(1):47–51 (in Chinese). Zheng Y, Zhang H, Zhang B. A new method in detecting the sticky rice component in traditional Chinese tabia. Archaeometry. 2016;58(S1):218–29. Li J, Zhang B. Why ancient Chinese people like to use organic-inorganic composite mortars?—Application history and reasons of organic–inorganic mortars in ancient Chinese buildings. J Archaeol Method Theory. 2019;26(2):502–36. Zhang K, Zhang H, Fang S, Li J, Zheng Y, Zhang B. Textual and experimental studies on the compositions of traditional Chinese organic–inorganic mortars. Archaeometry. 2014;56(S1):100–15. Feng L. Research of Qing Dynasty Zhejiang coastal defense Fort. Master’s Thesis, Hebei Normal University. 2015. (in Chinese). Xu J. Outline of Coastal Defense. 1887. https://103.242.200.9/ancientbook/portal/readPage/3A1CE242C21C458BBF9369BBE6D9581C/1/index.do?heightWord=%25E6%25B4%258B%25E9%2598%25B2%25E8%25AF%25B4%25E7%2595%25A5. (in Chinese). Chen Y, Wang X, Yang S, Guo Q. A preliminary study of the freeze-thaw cycle on the structure of earthen sites with different salts. Dunhuang Res. 2013;1:98-107+132 (in Chinese). Chen W, Guo Z, Xu Y, Chen P, Zhang S, Ye F. Laboratory tests on rammed earth samples of earthen sites instilled by reinforcement material SH. Chin J Geotech Eng. 2015;37(8):1517–23 (in Chinese). Pu T, Chen W, Du Y, Li W, Su N. Snowfall-related deterioration behavior of the Ming Great Wall in the eastern Qinghai-Tibet Plateau. Nat Hazards. 2016;84(3):1539–50. Qu J, Cheng G, Zhang K, Wang J, Zu R, Fang H. An experimental study of the mechanisms of freeze/thaw and wind erosion of ancient adobe buildings in Northwest China. Bull Eng Geol Environ. 2007;66(2):153–9. Shao M, Li L, Wang S, Wang E, Li Z. Deterioration mechanisms of building materials of Jiaohe ruins in China. J Cult Herit. 2013;14(1):38–44. Li N, Zhang Z, Wang D. Primary study on the “Sanhe Tu” from the Haizi and Weizi Emplacements in Tianjing Dagu site. Sci Conserv Archaeol. 2008;20(2):46–51 (in Chinese). Yuan R, Song X, Li J, Ding C. Research on rammed earth composition and building craftsmanship in ancient emplacement at Jiaoshan. Sci Conserv Archaeol. 2010;22(2):18–22 (in Chinese). Zhang H, Wan L. Research on the optimal formula of “Lime-soil” for restoration of the Xiaoshi harbor fort site at Huangshan. Jiangyin Sci Conserv Archaeol. 2010;22(2):23–6 (in Chinese). Wu R, Bao Q, Ji H. Research on material and manufacturing process of ancient trinity of coastal defence emplacements in the Minjiang River Estuary. Ind Constr. 2018;48(5):127–33 (in Chinese). Zhou S, Chen H, Li S, Zhang F, Liu X. Engineering characteristics analysis of four guangzhou artillery batteries of Qing dynasty. Herit Observ. 2019;4(2):136–8 (in Chinese). ISO 15148. Preview Hygrothermal performance of building materials and products-Determination of water absorption coefficient by partial immersion. 2002. Zhang H, Shi M, Shen W, Li Z, Zhang B, Liu R, Zhang R. Damage or protection? The role of smoked crust on sandstones from Yungang Grottoes. J Archaeol Sci. 2013;40(2):935–42.