What does physiological synchrony reveal about metacognitive experiences and group performance?

British Journal of Educational Technology - Tập 51 Số 5 - Trang 1577-1596 - 2020
Muhterem Dindar, Sanna Järvelä, Eetu Haataja

Tóm tắt

Abstract

There is a growing body of research on physiological synchrony (PS) in Collaborative Problem Solving (CPS). However, the current literature presents inconclusive findings about the way in which PS is reflected in cognitive and affective group processes and performance. In light of this, this study investigates the relationship between PS and metacognitive experiences (ie, judgement of confidence, task interest, task difficulty, mental effort and emotional valence) that are manifested during CPS. In addition, the study explores the association between PS and group performance. The participants were 77 university students who worked together on a computer‐based CPS simulation in groups of three. Participants’ electrodermal activity (EDA) was recorded as they worked on the simulation and metacognitive experiences were measured with situated self‐reports. A Multidimensional Recurrence Quantification Analysis was used to calculate the PS among the collaborators. The results show a positive relationship between continuous PS episodes and groups’ collective mental effort. No relationship was found between PS and judgement of confidence, task interest, task difficulty or emotional valence. The relationship between PS and group performance was also non‐significant. The current work addresses several challenges in utilising multimodal data analytics in CPS research and discusses future research directions.

Từ khóa


Tài liệu tham khảo

10.1038/s41598-018-21518-3

10.1016/j.learninstruc.2005.07.011

10.1111/cogs.12787

10.1016/S0167-8760(00)00190-2

Baker L., 1984, Handbook of reading research, 353

10.4278/0890-1171-12.1.8

10.1111/j.1464-0597.2008.00336.x

10.1016/j.jneumeth.2010.04.028

10.1111/j.1469-8986.1985.tb01603.x

10.1016/j.chb.2015.01.038

10.1109/JSEN.2010.2045498

10.1007/s11409-015-9142-6

10.1093/iwc/iwv013

10.1016/j.ijresmar.2015.08.004

10.1016/j.jsp.2009.04.002

10.3389/fpsyg.2017.01685

10.1037/1082-989X.12.1.45

Csapó B., 2017, The nature of problem solving. Using research to inspire 21st century learning

10.1016/j.compedu.2017.08.007

10.1016/j.intell.2011.06.004

Dawson M. E., 2017, Handbook of psychophysiology, 217

10.1016/j.learninstruc.2012.01.003

10.1145/3264913

10.1007/978-3-319-93843-1_8

10.1016/j.chb.2019.03.004

Dindar M. Järvelä S. Ahola S. Huang X. &Zhao G.(2019).Leaders and followers identified by emotional mimicry during collaborative learning: A facial expression recognition study on emotional valence. IEEE Transactions on Affective Computing. on emotional valence. IEEE Transactions on Affective Computing. Manuscript Submitted for Publication.

10.1016/j.compedu.2020.103922

10.1007/s10639-019-10059-5

10.1016/j.edurev.2005.11.001

10.1080/00461520.2011.538645

Efklides A., 2004, Efklides1B.Pdf, Hellenic Journal of Psychology, 1, 179

10.1007/BF03173090

10.1016/j.apergo.2009.02.002

10.1086/499639

10.1016/j.ijhcs.2019.102384

10.1016/j.ijinfomgt.2019.02.003

10.1006/obhd.1998.2805

Guastello S. J., 2016, Cognitive workload and fatigue in a vigilance dual task: miss errors, false alarms, and the effect of wearing biometric sensors while working, Nonlinear Dynamics, Psychology, and Life Sciences, 20, 509

Hadwin A. F., 2018, Handbook of self‐regulation of learning and performance, 83

10.1016/j.learninstruc.2012.10.001

10.1111/1469-8986.00107

10.1080/13540602.2016.1203772

10.1080/02602938.2019.1689545

Hausser J., 2009, Entropy Inference and the James‐Stein estimator, with application to nonlinear gene association networks Korbinian strimmer, Journal of Machine Learning Research, 10, 1469

10.1007/978-3-319-33261-1_7

10.1016/j.apergo.2009.04.009

10.1016/j.compedu.2015.09.005

10.1016/j.learninstruc.2010.05.002

10.1111/bjet.12917

10.1080/00461520.2012.748006

10.4135/9781446282229.n18

10.1007/s11412-018-9277-y

10.1037/0096-3445.135.1.36

10.1016/j.biopsycho.2012.08.007

10.14786/flr.v7i2.403

10.1111/j.1551-6709.2012.01269.x

Lu J. G., 2017, Micromacromultilevel R package

10.1097/01.nmd.0000253731.71025.fc

10.2307/259182

10.1080/07370024.2017.1338956

10.1037/met0000078

10.1016/j.physbeh.2015.05.033

10.1016/j.physbeh.2016.01.004

10.1109/THMS.2014.2325859

10.1016/j.concog.2008.04.005

OECD, 2013, PISA 2015 collaborative problem solving framework

10.1787/9789264281820-8-en

10.1177/0165025414538554

10.1037/0022-0663.84.4.429

Palumbo R. V., 2016, Interpersonal autonomic physiology: A systematic review of the literature, Personality and Social Psychology Review, 21, 1

10.1080/026999396380123

10.1016/j.learninstruc.2013.09.002

10.1186/s41039-018-0079-7

10.1111/bjet.12146

10.1027/1016-9040.10.3.199

10.1007/s11412-018-9281-2

Scollon R., 2009, The Routledge handbook of multimodal analysis, 170

10.1007/978-3-030-29736-7_34

10.1037/0096-1523.29.2.326

10.1016/j.chb.2017.08.007

10.1037/a0033125

10.1016/j.compedu.2019.103672

10.1007/s11251-013-9273-6

Twisk J. W. R., 2003, Applied longitudinal data analysis for epidemiology: A practical guide

10.1080/09500693.2015.1083634

10.1016/j.jesp.2010.03.004

10.1177/1046496406292938

Wallot S., 2018, Analyzing multivariate dynamics using cross‐recurrence quantification analysis (CRQA), diagonal‐cross‐recurrence profiles (DCRP), and multidimensional recurrence quantification analysis (MdRQA) – A tutorial in R, Frontiers in Psychology, 9, 1, 10.3389/fpsyg.2018.02232

10.1371/journal.pone.0168306

10.3389/fpsyg.2016.01835

Webber C. L., 2005, Tutorials in contemporary nonlinear methods for the behavioral sciences, 26

10.1016/j.lindif.2016.01.003

Wiltshire T. J., 2015, Team interaction dynamics during collaborative problem solving

10.1016/j.apergo.2018.07.007

Winne P. H., 2010, Bootstrapping learner’s self‐regulated learning, Psychological Test and Assessment Modeling, 52, 472

10.1016/j.chb.2019.03.026

10.1016/0030-5073(83)90144-7