Weighted differential evolution algorithm for numerical function optimization: a comparative study with cuckoo search, artificial bee colony, adaptive differential evolution, and backtracking search optimization algorithms

Neural Computing and Applications - Tập 32 Số 8 - Trang 3923-3937 - 2020
Pınar Çivicioǧlu1, Erkan Beşdok2, Mehmet Akif Günen2, Ümit Haluk Atasever2
1Department of Aircraft Electrics and Electronics, Faculty of Aeronautics and Astronautics, Erciyes University, Kayseri, Turkey
2Department of Geomatics Engineering, Engineering Faculty, Erciyes University, Kayseri, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(12):108–132

Civicioglu P (2013) Artificial cooperative search algorithm for numerical optimization problems. Inform Syst 229:58–76

Yang XS, Deb S (2009) Cuckoo search via levy flights. World congress on nature and biologically inspired computing-Nabic’2009. Coimbatore, India, vol 4, pp 210–214

Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

Yong W, Han-Xion L, Tingwen H, Long L (2014) Differential evolution based on covariance matrix learning and bimodal distribution parameter setting. Appl Soft Comput 218:232–247

Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219:8121–8144

Civicioglu P, Beşdok E (2013) A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif Intell Rev 39(4):315–346

Civicioglu P (2012) Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Comput Geosci 46:229–247

Bratton D, Kennedy J (2007) Defining a standard for particle swarm optimization. In: IEEE swarm intelligence symposium, Honolulu 1-4244-0708-7

Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10:281–295

Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73

Omran MGH, Clerc M (2015) http://www.particleswarm.info/Programs.html . Accessed 20 Feb 2018

Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evol Comput 9(2):159–195

Price KV, Storn R, Lampinen J (2005) Differential evolution: a practical approach to global optimization. Springer, Berlin

Salimi H (2015) Stochastic fractal search: a powerful metaheuristic algorithm. Knowl-Based Syst 75:1–18

Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112

Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 13:2232–2248

Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13:2592–2612

Wang D, Wua Z, Fei Y, Zhang W (2014) Structural design employing a sequential approximation optimization approach. Comput Struct 134:75–87

Maheri MR, Narimani MM (2014) An enhanced harmony search algorithm for optimum design of side sway steel frames. Comput Struct 136:78–89

Civicioglu P, Alcı M (2004) Edge detection of highly distorted images suffering from impulsive noise. AEU Int J Electron C 58(6):413–419

Wu X, Yang Z (2013) Nonlinear speech coding model based on genetic programming. Appl Soft Comput 13(7):3314–3323

Yoon Y, Kim YH (2013) An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks. IEEE Trans Cybern 43(5):1473–1483

Civicioglu P, Alcı M, Besdok E (2004) Using an exact radial basis function artificial neural network for impulsive noise suppression from highly distorted image databases. LNCS 3261:383–391

Chauhan RS, Arya SK (2013) An optimal design of IIR digital filter using particle swarm optimization. Appl Artif Intell 27(6):429–440

Yan Y, He Y, Hu Y, et al (2014) Video superresolution via parameter-optimized particle swarm optimization. Math Probl Eng 373425

Moezi SA, Zakeri E, Zare A, Nedaei M (2015) On the application of modified cuckoo optimization algorithm to the crack detection problem of cantilever Euler–Bernoulli beam. Comput Struct 157:42–50

Wang GG, Gandomi AH, Alavi AH, Deb S (2016) A hybrid method based on krill herd and quantum-behaved particle swarm optimization. Neural Comput Appl 4(27):989–1006

Heidari AA, Abbaspour RA, Jordehi AR (2017) An efficient chaotic water cycle algorithm for optimization tasks. Neural Comput Appl 1(28):57–85

Faris H, Aljarah I, Azmi Al-Betar M, Mirjalili S (2017) Grey wolf optimizer: a review of recent variants and applications. Neural Comput Appl 30:413–435

Aljarah I, Faris H, Mirjalili S, Al-Madi N (2018) Training radial basis function networks using biogeography-based optimizer. Neural Comput Appl 7(29):529–553

Wang GG, Gandomi AH, Alavi AH, Hao GS (2014) Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Comput Appl 2(25):297–308

Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 4(27):1053–1073

Alweshah M (2018) Construction biogeography-based optimization algorithm for solving classification problems. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3402-8

Liang JJ, Qu BY, Suganthan PN, Hernandez-Diaz AG (2013) Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Technical report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, January 2013

Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958

Wang Y, Liu ZZ, Li J et al (2016) Utilizing cumulative population distribution information in differential evolution. Appl Soft Comput 48:329–346

Civicioglu P, Besdok E (2018) A+ Evolutionary search algorithm and QR decomposition based rotation invariant crossover operator. Expert Syst Appl 103:49–62

https://www.mathworks.com/matlabcentral/fileexchange/68370-weighted-differential-evolution-algorithm-wde . Accessed 20 Feb 2018

Ghilani CD, Wolf PR (2006) Adjustment computations, spatial data analysis, Forth edn. Wiley, New Jersey

Yetkin M, Berber M (2014) Implementation of robust estimation in GPS networks using the Artificial Bee Colony algorithm. Earth Sci Inform 7:39–46. https://doi.org/10.1007/s12145-013-0131-5

Yetkin M (2018) Application of robust estimation in geodesy using the harmony search algorithm. J Spat Sci 63(1):63–73. https://doi.org/10.1080/14498596.2017.1341856

Derrac J, Garca S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18

Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Sci 8(1):3–30

Mezura-Montesa E, Coellob CAC (2011) Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm Evol Comput 1(4):173–194

Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Engrg 186:311–338