Weighted composition operators from the minimal Möbius invariant space into n-th weighted-type spaces

Xiangling Zhu1
1Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arazy, J., Fisher, S., Peetre, J.: Möbius invariant function spaces. J. Reine Angew. Math. 363, 110–145 (1985)

Colonna, F., Li, S.: Weighted composition operators from the minimal Möbius invariant space into the Bloch space. Mediterr. J. Math. 10, 395–409 (2013)

Colonna, F., Tjani, M.: Weighted composition operators from Banach spaces analytic functions into Bloch-type spaces. Contemp. Math. 687, 75–95 (2017)

Comtet, L.: Advanced Combinatorics. D. Reidel, Dordrecht (1974)

Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)

Du, J., Li, S., Zhang, Y.: Essential norm of generalized composition operators on Zygmund type spaces and Bloch type spaces. Ann. Polon. Math. 119, 107–119 (2017)

Du, J., Li, S., Zhang, Y.: Essential norm of weighted composition operators on Zygmund-type spaces with normal weight. Math. Inequal. Appl. 21, 701–714 (2018)

Li, S.: Weighted composition operators from minimal Möbius invariant spaces to Zygmund spaces. Filomat 27, 267–275 (2013)

Lou, Z.: Composition operators on Bloch type spaces. Analysis 23, 81–95 (2003)

Madigan, K., Matheson, A.: Compact composition operators on the Bloch space. Trans. Am. Math. Soc. 347, 2679–2687 (1995)

Stević S.: Composition operators from weighted Bergman space to $$n$$-th weighted space on the unit disk. Discrete Dyn. Nat. Soc. 2009, 11 (2009) (Art. ID 742019)

Stević, S.: Composition followed by differentiation from $$H^\infty $$ and the Bloch space to $$n$$-th weighted-type spaces on the unit disk. Appl. Math. Comput. 216, 3450–3458 (2010)

Stević, S.: Weighted differentiation composition operators from $$H^\infty $$ and Bloch spaces to $$n$$-th weighted-type spaces on the unit disk. Appl. Math. Comput. 216, 3634–3641 (2010)

Stević S.: Weighted differentiation composition operators from the mixed-norm space to the $$n$$-th weigthed-type space on the unit disk. Abstr. Appl. Anal. 2010, 15 (2010) (Art. ID 246287)

Stević, S.: Essential norm of some extensions of the generalized composition operators between $$k$$-th weighted-type spaces. J. Inequal. Appl. 2017, 220 (2017)

Tjani M.: Compact composition operators on some Möbius invariant Banach spaces, Ph.D. Dissertation, Michigan State University (1996)

Wu, Y., Wulan, H.: Products of differentiation and composition operators on the Bloch space. Collet. Math. 63, 93–107 (2012)

Wulan, H., Xiong, C.: Composition operators on the minimal Möbius invariant space. In: Hilbert Spaces of Analytic Functions. CRM Proceedings and Lecture Notes, vol. 51 (2010)

Wulan, H., Zheng, D., Zhu, K.: Compact composition operators on BMOA and the Bloch space. Proc. Am. Math. Soc. 137, 3861–3868 (2009)

Zhu, K.: Bloch type spaces of analytic functions. Rocky Mt. J. Math. 23, 1143–1177 (1993)

Zhu, K.: Operator Theory in Function Spaces, 2ed edn. American Mathematical Society, Providence (2007)

Zhu, X., Du, J.: Weighted composition operators from weighted Bergman spaces to Stević-type spaces. Math. Inequal. Appl. 22, 361–376 (2019)