Bất Đẳng Thức Fourier Có Trọng Số Thông Qua Các Sắp Đặt

Springer Science and Business Media LLC - Tập 24 - Trang 1225-1248 - 2017
Javad Rastegari1, Gord Sinnamon1
1Department of Mathematics, University of Western Ontario, London, Canada

Tóm tắt

Phương pháp sử dụng các sắp đặt để đưa ra các điều kiện đủ cho các bất đẳng thức Fourier giữa các không gian Lebesgue có trọng số được xem xét lại, một sự so sánh giữa hai điều kiện đủ đã biết được thực hiện, và phương pháp này được mở rộng để cung cấp các điều kiện đủ cho một phạm vi chỉ số mới. Khi \( 1

Từ khóa

#Bất đẳng thức Fourier #không gian Lebesgue có trọng số #điều kiện đủ #biến đổi Fourier #ví dụ đối kháng.

Tài liệu tham khảo

Ariño, M.A., Muckenhoupt, B.: Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for nonincreasing functions. Trans. Am. Math. Soc. 320(2), 727–735 (1990). doi:10.2307/2001699 Benedetto, J.J., Heinig, H.P.: Lecture Notes in Mathematics. Hardy, weighted, spaces and the Laplace transform, Harmonic analysis, (Cortona, 1982), vol. 992, pp. 240–277. Springer, Berlin (1983). doi:10.1007/BFb0069163 Benedetto, J.J., Heinig, H.P.: Weighted Fourier inequalities: new proofs and generalizations. J. Fourier Anal. Appl. 9(1), 1–37 (2003). doi:10.1007/s00041-003-0003-3 Benedetto, J.J., Heinig, H.P., Johnson, R.: Weighted Hardy spaces and the Laplace transform. II. Math. Nachr. 132, 29–55 (1987). doi:10.1002/mana.19871320104 Bennett, C., Sharpley, R.: Interpolation of Operators, Pure and Applied Mathematics, vol. 129. Academic Press Inc., Boston (1988) Bradley, J.S.: Hardy inequalities with mixed norms. Can. Math. Bull. 21(4), 405–408 (1978). doi:10.4153/CMB-1978-071-7 Gogatishvili, A., Stepanov, V.D.: Reduction theorems for operators on the cones of monotone functions. J. Math. Anal. Appl. 405(1), 156–172 (2013). doi:10.1016/j.jmaa.2013.03.046 Grafakos, L.: Graduate Texts in Mathematics. Classical Fourier analysis, vol. 249, 2nd edn. Springer, New York (2008) Heinig, H.P.: Weighted norm inequalities for classes of operators. Indiana Univ. Math. J. 33(4), 573–582 (1984). doi:10.1512/iumj.1984.33.33030 Heinig, H.P.: Estimates for operators in mixed weighted \(L^p\)-spaces. Trans. Am. Math. Soc. 287(2), 483–493 (1985). doi:10.2307/1999657 Jodeit, M., Jr., Torchinsky, A.: Inequalities for Fourier transforms. Studia Math., 37, 245–276 (1970/71) Jurkat, W.B., Sampson, G.: On maximal rearrangement inequalities for the Fourier transform. Trans. Am. Math. Soc. 282(2), 625–643 (1984). doi:10.2307/1999257 Jurkat, W.B., Sampson, G.: On rearrangement and weight inequalities for the Fourier transform. Indiana Univ. Math. J. 33(2), 257–270 (1984). doi:10.1512/iumj.1984.33.33013 Kokilashvili, V., Meskhi, A., Persson, L.-E.: Weighted Norm Inequalities for Integral Transforms with Product Kernels. Mathematics Research Developments Series. Nova Science Publishers Inc., New York (2010) Kufner, A., Maligranda, L., Persson, L.-E.: The Hardy inequality. About its history and some related results, Vydavatelský Servis, Plzeň (2007) Mastyło, M., Sinnamon, G.: A Calderón couple of down spaces. J. Funct. Anal. 240(1), 192–225 (2006). doi:10.1016/j.jfa.2006.05.007 Muckenhoupt, B.: Weighted norm inequalities for the Fourier transform. Trans. Am. Math. Soc. 276(2), 729–742 (1983). doi:10.2307/1999080 Muckenhoupt, B.: A note on two weight function conditions for a Fourier transform norm inequality. Proc. Am. Math. Soc. 88(1), 97–100 (1983). doi:10.2307/2045117 Okpoti, C.A., Persson, L.-E., Sinnamon, G.: An equivalence theorem for some integral conditions with general measures related to Hardy’s inequality. J. Math. Anal. Appl. 326(1), 398–413 (2007). doi:10.1016/j.jmaa.2006.03.015 Okpoti, C.A., Persson, L.-E., Sinnamon, G.: An equivalence theorem for some integral conditions with general measures related to Hardy’s inequality. II. J. Math. Anal. Appl. 337(1), 219–230 (2008). doi:10.1016/j.jmaa.2007.03.074 Rastegari, J.: Fourier Inequalities in Lorentz and Lebesgue Spaces. PhD Thesis, University of Western Ontario, London, Canada (2015) Rastegari, J., Sinnamon, G.: Fourier series in weighted Lorentz spaces. J. Fourier Anal. Appl. 22(5), 1192–1223 (2016). doi:10.1007/s00041-015-9455-5 Sinnamon, G.: The Fourier transform in weighted Lorentz spaces. Publ. Mat. 47(1), 3–29 (2003). doi:10.5565/PUBLMAT_47103_01 Sinnamon, G.: Fourier Inequalities and a New Lorentz Space, Banach and Function Spaces II. Yokohama Publishers, Yokohama (2008) Sinnamon, G.: Bootstrapping weighted Fourier inequalities. J. Math. Inequal. 3(3), 341–346 (2009). doi:10.7153/jmi-03-34 Sinnamon, G., Stepanov, V.D.: The weighted Hardy inequality: new proofs and the case \(p=1\). J. Lond. Math. Soc. (2) 54(1), 89–101 (1996). doi:10.1112/jlms/54.1.89 Strömberg, J.-O., Wheeden, R.L.: Weighted norm estimates for the Fourier transform with a pair of weights. Trans. Am. Math. Soc. 318(1), 355–372 (1990). doi:10.2307/2001243 Wedestig, A.: Some new Hardy type inequalities and their limiting inequalities. JIPAM 4(3), Article 61 (electronic) (2003)