Weight of evidence approach using a TK gene mutation assay with human TK6 cells for follow-up of positive results in Ames tests: a collaborative study by MMS/JEMS
Tóm tắt
Conflicting results between bacterial mutagenicity tests (the Ames test) and mammalian carcinogenicity tests might be due to species differences in metabolism, genome structure, and DNA repair systems. Mutagenicity assays using human cells are thought to be an advantage as follow-up studies for positive results in Ames tests. In this collaborative study, a thymidine kinase gene mutation study (TK6 assay) using human lymphoblastoid TK6 cells, established in OECD TG490, was used to examine 10 chemicals that have conflicting results in mutagenicity studies (a positive Ames test and a negative result in rodent carcinogenicity studies).
Two of 10 test substances were negative in the overall judgment (20% effective as a follow-up test). Three of these eight positive substances were negative after the short-term treatment and positive after the 24 h treatment, despite identical treatment conditions without S9. A toxicoproteomic analysis of TK6 cells treated with 4-nitroanthranilic acid was thus used to aid the interpretation of the test results. This analysis using differentially expressed proteins after the 24 h treatment indicated that in vitro specific oxidative stress is involved in false positive response in the TK6 assay.
The usefulness of the TK6 assay, by current methods that have not been combined with new technologies such as proteomics, was found to be limited as a follow-up test, although it still may help to reduce some false positive results (20%) in Ames tests. Thus, the combination analysis with toxicoproteomics may be useful for interpreting false positive results raised by 24 h specific reactions in the assay, resulting in the more reduction (> 20%) of false positives in Ames test.
Từ khóa
Tài liệu tham khảo
ICH. ICH guideline M7 - genotoxic impurities - assessment and control of DNA reactive (mutagenic) impurities to limit potential carcinogenic risk. Guideline. 2014;44:30 Available from: http://www.ich.org/products/guidelines/multidisciplinary/article/multidisciplinary-guidelines.html.
Hardy A, Benford D, Halldorsson T, Jeger M, Knutsen HK, More S, et al. Clarification of some aspects related to genotoxicity assessment. EFSA J. 2017;15(12):e05113.
ECHA. Chapter R.7a: endpoint specific guidance. In: Guid. Inf. Requir. Chem. Saf. Assessment. Version 6.0; 2017.
Kirkland D, Aardema M, Henderson L, Müller L. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens: I. sensitivity, specificity and relative predictivity. Mutat Res Genet Toxicol Environ Mutagen. 2005;584:1–256.
Matthews EJ, Kruhlak NL, Cimino MC, Benz RD, Contrera JF. An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: I. identification of carcinogens using surrogate endpoints. Regul Toxicol Pharmacol. 2006;44:83–96.
Tweats D, Bourdin Trunz B, Torreele E. Genotoxicity profile of fexinidazole--a drug candidate in clinical development for human African trypanomiasis (sleeping sickness). Mutagenesis. 2012;27(5):523–32. https://doi.org/10.1093/mutage/ges015 Epub 2012 Apr 26. PMID: 22539226.
OECD. Guidance document for the use of adverse outcome pathways in developing Integrated Approaches to Testing and Assessment (IATA). OECD Guidel Test Chem. 2016
Fujita Y, Honda H, Yamane M, Morita T, Matsuda T, Morita O. A decision tree-based integrated testing strategy for tailor-made carcinogenicity evaluation of test substances using genotoxicity test results and chemical spaces. Mutagenesis. 2019;34(1):101–9.
European Commission. SCCS (Scientific Committee on Consumer Safety), SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation 10th revision: SCCS; 2018. Available from: http://ec.europa.eu/health//sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_190.pdf
Committee S, Sccs CS. Scientific Committee on Consumer Safety Basic Brown 17 COLIPA n ° B007. 2014.
Pfuhler S, Pirow R, Downs TR, Haase A, Hewitt N, Luch A, et al. Validation of the 3D reconstructed human skin comet assay, an animal-free alternative for following-up positive results from standard in vitro genotoxicity assays. Mutagenesis. 2020;geaa009. https://doi.org/10.1093/mutage/geaa009.
SCCP. ADDENDUM to the SCCS’s notes of guidance for the testing of cosmetic ingredients and their safety evaluation, 8th revision. The SCCS adopted this Addendum on 9 April 2014 by written procedure, SCCS/1501/12 (2014).
Ates G, Raitano G, Heymans A, Van Bossuyt M, Vanparys P, Mertens B, et al. In silico tools and transcriptomics analyses in the mutagenicity assessment of cosmetic ingredients: a proof-of-principle on how to add weight to the evidence. Mutagenesis. 2016;31:453–61 Oxford Academic.
Kirkland, et al. Can in vitro mammalian cell genotoxicity test results be used to complement positive results in the Ames test and help predict carcinogenic or in vivo genotoxic activity? I. Reports of individual databases presented at an EURL ECVAM Workshop. Mutat Res Genet Toxicol Environ Mutagen. 2014;775–776:55–68.
Kirkland, et al. Can in vitro mammalian cell genotoxicity test results be used to complement positive results in the Ames test and help predict carcinogenic or in vivo genotoxic activity? II. Construction and analysis of a consolidated database. Mutat Res Genet Toxicol Environ Mutagen. 2014;775–776:69–80.
Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11:220–8.
OECD. Test No. 490: In vitro mammalian cell gene mutation tests using the thymidine kinase gene: OECD Guidelines for the Testing of Chemicals, OECD, Paris (2016). https://doi.org/10.1787/9789264264908-en.
Zeiger E, Anderson B, Haworth S, Lawlor T, Mortelmans K. Salmonella mutagenicity tests: V. Results from the testing of 311 chemicals. Environ Mol Mutagen. 1992;19:2–141 John Wiley & Sons, Ltd.
Dunkel VC, Zeiger E, Brusick D, McCoy E, McGregor D, Mortelmans K, et al. Reproducibility of microbial mutagenicity assays: II. Testing of carcinogens and noncarcinogens in Salmonella typhimurium and Escherichia coli. Environ Mutagen. 1985;7:1–19.
National Cancer Institute CARCINOGENESIS Technical Report Series 33 No. 177. 1979. Available from: https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr177.pdf. Accessed 16 Sept 2020.
Claxton LD, Dearfield KL, Spanggord RJ, Riccio ES, Mortelmans K. Comparative mutagenicity of halogenated pyridines in the Salmonella typhimurium/mammalian microsome test. Mutat Res. 1987;176:185–98.
National Cancer Institute CARCINOGENESIS Technical Report Series No. 178. 1979. Available from: https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr178.pdf. Accessed 16 Sept 2020.
Toyoda-Hokaiwado N, Inoue T, Masumura K, Hayashi H, Kawamura Y, Kurata Y, et al. Integration of in vivo genotoxicity and short-term carcinogenicity assays using F344 gpt delta transgenic rats: In vivo mutagenicity of 2,4-diaminotoluene and 2,6-diaminotoluene structural isomers. Toxicol Sci. 2010;114:71–8.
National Cancer Institute CARCINOGENESIS Technical Report Series No. 200 NTP No. 80–20. 1980. Available from: https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr200.pdf. Accessed 16 Sept 2020.
Chung KT, Murdock CA, Stevens SE, Li YS, Wei CI, Huang TS, et al. Mutagenicity and toxicity studies of p-phenylenediamine and its derivatives. Toxicol Lett. 1995;81:23–32.
National Cancer Institute CARCINOGENESIS Technical Report Series No. 126. 1978. Available from: https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr126.pdf. Accessed 16 Sept 2020.
Oberly TJ, Kokkino AJ, Bewsey BJ, Richardson KK. Mutagenicity evaluation of HC Blue No. 1 and HC Blue No. 2. III. Effects in the Salmonella typhimurium/Escherichia coli reversion assay and the mouse lymphoma L5178Y TK+/− forward mutation assay. Mutat Res. 1990;241:151–9.
Zeiger E, Anderson B, Haworth S, Lawlor T, Mortelmans K. Salmonella mutagenicity tests: IV. Results from the testing of 300 chemicals. Environ Mol Mutagen. 1988;11:1–157.
National Toxicology Program Technical Report Series No. 293. 1985. Available from: https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr293.pdf. Accessed 16 Sept 2020.
National Toxicology Program Technical Report Series No. 276. 1985. Available from: https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr276.pdf. Accessed 16 Sept 2020.
Rumsby P, Lawton L, Ewence A, Rockett L, Hall T, James H, Jackson P. Review of the current toxicological and occurrence information available on iodinated disinfection by-products. DEFRA 7883.03 (DWI 70/2/233). Swindon; 2009. www.wrcplc.co.uk.
National Cancer Institute CARCINOGENESIS Technical Report Series No. 110. 1978. Available from: https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr110.pdf. Accessed 16 Sept 2020.
National Toxicology Program. 4-Nitroanthranilic acid (619–17-0) | Chemical Effects in Biological Systems. Available from: https://manticore.niehs.nih.gov/cebssearch/test_article/619-17-0. Cited 2020 Sep 14.
National Cancer Institute CARCINOGENESIS Technical Report Series No. 109. 1978. Available from: https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr109.pdf. Accessed 16 Sept 2020.
Mortelmans K, Haworth S, Lawlor T, Speck W, Tainer B, Zeiger E. Salmonella mutagenicity tests: II. Results from the testing of 270 chemicals. Environ Mutagen. 1986;8:1–119.
National Cancer Institute CARCINOGENESIS Technical Report Series No. 64. 1978. Available from: https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr064.pdf. Accessed 16 Sept 2020.
Shahin MM, Von Borstel RC. Comparisons of mutation induction in reversion systems of Saccharomyces cerevisiae and Salmonella typhimurium. Mutat Res. 1978;53:1–10.
IARC Monographs on the evaluation of the carcinogenic risk of chemicals to man; Some aromatic amines and related nitro compounds –hair dyes, colouring agents and miscellaneous industrial chemicals. Lyon; 1978;16. ISBN; 92 832 1216 9.
Searle CE, Harnden DG, Venitt S, Gyde OHB. Carcinogenicity and mutagenicity tests of some hair colourants and constituents. Nature. 1975;255:506–7.
U.S. Department of HealthEducation, and Welfare, National Toxicology Program. Bioassay of 4-Nitro-o-phenylenediamine for possible carcinogenicity. National Cancer Institute Carcinogenesis technical report series no. 180. 1979.
National Cancer Institute CARCINOGENESIS Technical Report Series No. 180. 1979. Available from: https://ntp.niehs.nih.gov/ntp/htdocs/lt_rpts/tr180.pdf. Accessed 16 Sept 2020.
Omori T, Honma M, Hayashi M, Honda Y, Yoshimura I. A new statistical method for evaluation of L5178Ytk+/− mammalian cell mutation data using microwell method. Mutat Res Genet Toxicol Environ Mutagen. 2002;517:199–208.
Simpson DG, Margolin BH. Recursive nonparametric testing for dose-response relationship subject to downturns at high dose. Biometrika. 1986;73:589–96.
Masuda T, Tomita M, Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res. 2008;7:731–40 American Chemical Society.
Adachi J, Hashiguchi K, Nagano M, Sato M, Sato A, Fukamizu K, et al. Improved proteome and phosphoproteome analysis on a cation exchanger by a combined acid and salt gradient. Anal Chem. 2016;88:7899–903.
Scientific Committee on Consumer Safety, Opinion on toluene-2,5-diamine and its sulfate. Colipa n° A5. Brussels: European Commission; 2012.
Mitchell AD, Auletta AE, Clive D, Kirby PE, Moore MM, Myhr BC. The L5178Y/tk(+/−) mouse lymphoma specific gene and chromosomal mutations assay: a phase III report of the U.S. environmental protection agency Gene-Tox program. Mutat Res. 1997;394:177–303.
Environemental Protection Agency. Provisional peer reviewed toxicity values for 2,6-Toluenediamine. 2005; Available from: https://cfpub.epa.gov/ncea/pprtv/documents/Toluenediamine26.pdf.
EURL ECVAM genotoxicity and carcinogenicity consolidated database. Available from: https://ec.europa.eu/jrc/en/scientific-tools/Ames. Accessed 22 Dec 2020.
McGregor DB, Brown A, Cattanach P, Edwards I, McBride D, Caspary WJ. Responses of the L5178Y tk+/tk− mouse lymphoma cell forward mutation assay ii: 18 coded chemicals. Environ Mol Mutagen. 1988;11:91–118.
National Toxicology Program. Mouse lymphoma assay; Aliquot No. 721150. Available from: https://manticore.niehs.nih.gov/cebssearch/test_article/619-17-0. Accessed 22 Dec 2020.
Mitchell AD, Rudd CJ, Caspary WJ. Evaluation of the L5178Y mouse lymphoma cell mutagenesis assay: Intralaboratory results for sixty-three coded chemicals tested at sri international. Environ Mutagen Environ Mol Mutagen. 1988;12:37–101.
Myhr BC, Caspary WJ. Evaluation of the L5178Y mouse lymphoma cell mutagenesis assay: Intralaboratory results for sixty-three coded chemicals tested at litton bionetics, inc. Environ Mol Mutagen. 1988;12:103–94.
NTP database; 2,5-Toluenediamine sulfate 10736-T. Available from: https://ntp.niehs.nih.gov/whatwestudy/testpgm/status/ts-10736-t.html?utm_source=direct&utm_medium=prod&utm_campaign=ntpgolinks&utm_term=ts-10736-t. Cited 2020 Aug 14.
Honma M, Hayashi M. Comparison of in vitro micronucleus and gene mutation assay results for p53-competent versus p53-deficient human lymphoblastoid cells. Environ Mol Mutagen. 2011;52(5):373–84. https://doi.org/10.1002/em.20634 Epub 2010 Oct 20. PMID: 20963812.
Whitwell J, Smith R, Jenner K, Lyon H, Wood D, Clements J, Aschcroft-Hawley K, Gollapudi B, Kirkland D, Lorge E, Pfuhler S, Tanir JY, Thybaud V. Relationships between p53 status, apoptosis and induction of micronuclei in different human and mouse cell lines in vitro: Implications for improving existing assays. Mutat Res Genet Toxicol Environ Mutagen. 2015;789–790:7–27. https://doi.org/10.1016/j.mrgentox.2015.05.011 Epub 2015 May 30. PMID: 26232254.
Zeiger E. Identification of rodent carcinogens and noncarcinogens using genetic toxicity tests: premises, promises, and performance. Regul Toxicol Pharmacol. 1998;28(2):85–95. https://doi.org/10.1006/rtph.1998.1234 PMID: 9927558.
Morita T, Hamada S, Masumura K, Wakata A, Maniwa J, Takasawa H, Yasunaga K, Hashizume T, Honma M. Evaluation of the sensitivity and specificity of in vivo erythrocyte micronucleus and transgenic rodent gene mutation tests to detect rodent carcinogens. Mutat Res Genet Toxicol Environ Mutagen. 2016;802:1–29. https://doi.org/10.1016/j.mrgentox.2016.03.008 Epub 2016 Mar 21. PMID: 27169373.
National Toxicology Program. Testing Status of 4-(Chloroacetyl) acetanilide 10592-P, No.223043. Available from: https://ntp.niehs.nih.gov/whatwestudy/testpgm/status/ts-10592-p.html?utm_source=direct&utm_medium=prod&utm_campaign=ntpgolinks&utm_term=ts-10592-p. Accessed 22 Dec 2020.
National Toxicology Program. Testing status of 2-Chloromethylpyridine hydrochloride 10738-C, No.145263, 448657, A65556, 861777, and 145263, NTP. Available from: https://ntp.niehs.nih.gov/whatwestudy/testpgm/status/ts-10738-c.html?utm_source=direct&utm_medium=prod&utm_campaign=ntpgolinks&utm_term=ts-10738-c. Accessed 22 Dec 2020.
National Toxicology Program. Testing status of 8-Hydroxyquinoline 10598-N, No. 470651, 592699, 616445, 375977, 980523, and 470651. Available from: https://ntp.niehs.nih.gov/whatwestudy/testpgm/status/ts-10598-n.html?utm_source=direct&utm_medium=prod&utm_campaign=ntpgolinks&utm_term=ts-10598-n. Accessed 22 Dec 2020.
National Toxicology Program. Testing status of 1-Nitronaphthalene 10425-R, No. 153730. Available from: https://ntp.niehs.nih.gov/whatwestudy/testpgm/status/ts-10425-r.html?utm_source=direct&utm_medium=prod&utm_campaign=ntpgolinks&utm_term=ts-10425-r. Accessed 22 Dec 2020.
National Toxicology Program. Testing status of 4-Nitro-o-phenylenediamine 10476-J, No. 704945, 549927, A82327, and 704945, NTP. Available from: https://ntp.niehs.nih.gov/whatwestudy/testpgm/status/ts-10476-j.html?utm_source=direct&utm_medium=prod&utm_campaign=ntpgolinks&utm_term=ts-10476-j. Accessed 22 Dec 2020.
Martin CN, Beland FA, Roth RW, Kadlubar FF. Covalent binding of benzidine and n-acetylbenzidine to dna at the c-8 atom of deoxyguanosine in vivo and in vitro. Cancer Res. 1982;42:2678–86.
Murata M, Kawanishi S. Mechanisms of oxidative DNA damage induced by carcinogenic arylamines. Front Biosci. 2011;16:1132–43.
Ziegler DM, Ansher SS, Nagata T, Kadlubar FF, Jakoby WB. N-methylation: potential mechanism for metabolic activation of carcinogenic primary arylamines. Proc Natl Acad Sci U S A. 1988;85:2514–7.
O’Brien KAF, Gatehouse DG, Tiley M. Induction of mutations in TK6 human lymphoblastoid cells by ethyl methanesulphonate, benzo[ a ]pyrene and benzidine. Mutagenesis. 1990;5:55–60 Oxford Academic.
Myhr BC, Caspary WJ, Holden HE. Chemical mutagenesis at the thymidine kinase locus in L5178Y mouse lymphoma cells: results for 31 coded compounds in the national toxicology program. Environ Mol Mutagen. 1991;18:51–83.
McGregor DB, Edwards I, Roland Wolf C, Forrester LM, Caspary WJ. Endogenous xenobiotic enzyme levels in mammalian cells. Mutat Res. 1991;261:29–39.
Zanoni TB, Hudari F, Munnia A, Peluso M, Godschalk RW, Zanoni MVB, et al. The oxidation of p-phenylenediamine, an ingredient used for permanent hair dyeing purposes, leads to the formation of hydroxyl radicals: oxidative stress and DNA damage in human immortalized keratinocytes. Toxicol Lett. 2015;239:194–204. https://doi.org/10.1016/j.toxlet.2015.09.026 Elsevier Ireland Ltd.
Chao MW, Kim MY, Ye W, Ge J, Trudel LJ, Belanger CL, et al. Genotoxicity of 2,6- and 3,5-dimethylaniline in cultured mammalian cells: the role of reactive oxygen species. Toxicol Sci. 2012;130:48–59.
Chao MW, Erkekoglu P, Tseng CY, Ye W, Trudel LJ, Skipper PL, et al. Intracellular generation of ROS by 3,5-dimethylaminophenol: persistence, cellular response, and impact of molecular toxicity. Toxicol Sci. 2014;141:300–13.
Gold LS, de Veciana M, Backman GM, Magaw R, Lopipero P, Smith M, et al. Chronological supplement to the carcinogenic potency database: standardized results of animal bioassays published through December 1982. Environ Health Perspect. 1986;67:161–200.
Taningher M, Peluso M, Parodi S, Ledda-Columbano GM, Columbano A. Genotoxic and non-genotoxi activities of 2,4- and 2,6-diaminotoluene, as evaluated in Fischer-344 rat liver. Toxicology. 1995;99:1–10.
Cunningham ML, Foley J, Maronpot RR, Matthews HB. Correlation of hepatocellular proliferation with hepatocarcinogenicity induced by the mutagenic noncarcinogen: carcinogen pair—2,6- and 2,4-diaminotoluene. Toxicol Appl Pharmacol. 1991;107:562–7.
George E, Westmoreland C. Evaluation of the in vivo genotoxicity of the structural analogues 2,6-diaminotoluene and 2,4-diaminotoluene using the rat micronucleus test and rat liver UDS assay. Carcinogenesis. 1991;12:2233–7.
Cunningham ML, Hayward JJ, Shane BS, Tindall KR. Distinction of mutagenic carcinogens from a mutagenic noncarcinogen in the Big Blue transgenic mouse. Environ Health Perspect. 1996;104(Suppl):683–6.
Sui H, Ohta R, Shiragiku T, Akahori A, Suzuki K, Nakajima M, et al. Evaluation of in vivo mutagenicity by 2,4-diaminotoluene and 2,6-diaminotoluene in liver of F344 gpt delta transgenic rat dosed for 28 days: a collaborative study of the gpt delta transgenic rat mutation assay. Genes Environ. 2012;34:25–33.
Allavena A, Martelli A, Robbiano L, Brambilla G. Evaluation in a battery of in vivo assays of four in vitro genotoxins proved to be noncarcinogens in rodents. Teratog Carcinog Mutagen. 1992;12:31–41.
Sasaki YF, Fujikawa K, Ishida K, Kawamura N, Nishikawa Y, Ohta S, et al. The alkaline single cell gel electrophoresis assay with mouse multiple organs: results with 30 aromatic amines evaluated by the IARC and U.S. NTP. Mutat Res. 1999;440:1–18.
Cunningham ML, Burka LT, Matthews HB. Metabolism, disposition, and mutagenicity of 2,6-diaminotoluene, a mutagenic noncarcinogen. Drug Metab Dispos. 1989;17:612–7.
Hatch FT, Knize MG, Colvin ME. Extended quantitative structure-activity relationships for 80 aromatic and heterocyclic amines: structural, electronic, and hydropathic factors affecting mutagenic potency. Environ Mol Mutagen. 2001;38:268–91.
Revollo J, Petibone DM, McKinzie P, Knox B, Morris SM, Ning B, Dobrovolsky VN. Whole genome and normalized mRNA sequencing reveal genetic status of TK6, WTK1, and NH32 human B-lymphoblastoid cell lines. Mutat Res Genet Toxicol Environ Mutagen. 2016;795:60–9.
Prival MJ, Dunkel VC. Reevaluation of the mutagenicity and carcinogenicity of chemicals previously identified as “false positives” in the Salmonella typhimurium mutagenicity assay. Environ Mol Mutagen. 1989;13:1–24.
Burnett CM, Corbett JF. Failure of short-term in vitro mutagenicity tests to predict the animal carcinogenicity of hair dyes. Food Chem Toxicol. 1987;25:703–7.