Weakly Associative Groups
Tóm tắt
Từ khóa
Tài liệu tham khảo
W.A. Baylis and G. Jones, Special relativity with Clifford algebras and 2x2 matrices, and the exact product of two boosts,/. Math. Phys. 29 (1988), 57–62.
R.H. Brück, A Survey of Binary Systems, 2nd ed., Springer-Verlag, New York 1966.
H. Karzel, Inzidenzgruppen I, lecture notes by I. Pieper and K. Sörensen, Univ. Hamburg (1965), 123–135.
H. Karzel, Zusammenhänge zwischen Fastbereichen, scharf 2-fach transitiven Permutationsgruppen und 2-Strukturen mit Rechtecksaxiom, Abh. Math. Sem. Univ. Hamburg 32 (1968), 191–206.
W. Kerby, Infinite Sharply Multiply Transitive Groups, Hamburger Mathematische Einelschriften, Neue Folge, Heft 6. Vandenhoek und Ruprecht, Göttingen 1974.
W. Kerby and H. Wefelscheid, Bemerkungen über Fastbereiche und scharf 2-fach transitive Gruppen, Abh. Math. Sem. Univ. Hamburg 37 (1971), 20–29.
W. Kerby and H. Wefelscheid, Über eine scharf 3-fach transitiven Gruppen zugeordnete algebraische Struktur, Abh. Math. Sem. Univ. Hamburg 37 (1972), 225–235.
W. Kerby and H. Wefelscheid, Conditions of finiteness in sharply 2-transitive groups, Aequat. Math. 8(1972), 169–172.
W. Kerby and H. Wefelscheid, Über eine Klasse von scharf 3-fach transitiven Gruppen, J. reine angew Math. 268/269 (1974), 17–26.
W. Kerby and H. Wefelscheid, The maximal subnear-field of a neardomain, J. Algebra, 28, (1974), 319–325.
G. Kist, Theorie der veralegemeinerten kinematischen Räume, Results Math. (Birkhäuser Verlag) 12 (1987), 325–347.
N.A. Salingaros, Erratum: The Lorentz group and the Thomas precession. II. Exact results for the product of two boosts, J. Math. Phys. 29 ( 1988), 1265.
I.N. Sneddon, ed., Encyclopedic Dictionary of Mathematics for Engineers and Applied Scientists, p. 320, Pergamon, New York, 1976.
L.H. Thomas, Recollections of the discovery of the Thomas precessional frequency, AIP Conf Proc. No. 95, High Energy Spin Physics Brookhaven National Lab, ed. G.M. Bunce, (1982), 4–12.
A.A. Ungar, Thomas rotation and the parametrization of the Lorentz transformation group, Found. Phys. Lett. 1 (1988), 57–89.
A.A. Ungar, The Thomas rotation formalism underlying a nonassociative group structure for relativistic velocities, Appl. Math. Lett. 1 (1988), 403–405.
A.A. Ungar, Axiomatic approach to the nonassociative group of relativistic velocities, Found. Phys. Lett. 2 (1989), 199–203.
A.A. Ungar, The relativistic velocity composition paradox and the Thomas rotation, Found. Phys. 19(1989), 1383–1394.
A.A. Ungar, Quasidirect product groups and the Lorentz transformation group, in T.M. Rassias (ed.), Constantin Caratheodory: An International Tribute, World Scientific Pub., NJ, 1991.
A.A. Ungar, The relativistic noncommutative nonassociative group of velocities and the Thomas rotation, Results Math. 16(1989), 168–179.
H. Wähling, Theorie der Fastkörper, Thaies Verlag, W. Germany, 1987.
H. Wefelscheid, ZT-Subgroups of sharply 3-transitive Groups, Proc. Edinburgh Math. Soc, 23, (1980), 9–14.
H. Wefelscheid, personal communication.
H.E. Wolfe, Introduction to Non-Euclidean Geometry, p. vi, Dryden Press, New York, 1945.
H. Wussing, The Genesis of the Abstract Group Concept, p. 193(trans, by A. Shenitzer), MIT press, MA, 1984.