Định lý hội tụ yếu và mạnh cho các ánh xạ đa trị tương đối không mở rộng trong không gian Banach

S. Homaeipour1, ‪Abdolrahman Razani1
1Department of Mathematics, Faculty of Science, Imam Khomeini International University, P.O. Box 34149-16818, Qazvin, Iran

Tóm tắt

Tóm tắtTrong bài báo này, một chuỗi lặp cho các ánh xạ đa trị tương đối không mở rộng được giới thiệu thông qua khái niệm chiếu tổng quát, sau đó các định lý về hội tụ yếu và mạnh được chứng minh.Phân loại Chủ đề Toán học năm 2000: 47H09; 47H10; 47J25.

Từ khóa


Tài liệu tham khảo

Xu HK: Inequalities in Banach spaces with applications. Nonlinear Anal 1991, 16: 1127–1138. 10.1016/0362-546X(91)90200-K

Takahashi W: Nonlinear Functional Analysis. Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama 2000.

Matsushita S, Takahashi W: A strong convergence theorem for relatively nonexpansive mappings in a Banach space. J Approx Theory 2005, 134: 257–266. 10.1016/j.jat.2005.02.007

Kamimura S, Takahashi W: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J Optim 2002, 13: 938–945. 10.1137/S105262340139611X

Reich S: A weak convergence theorem for the alternating method with Bregman distances. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. In Lecture Notes in Pure and Appl Math. Volume 178. Dekker, New York; 1996:313–318.

Butnariu D, Reich S, Zaslavski AJ: Asymptotic behavior of relatively nonexpansive operators in Banach spaces. J Appl Anal 2001,7(2):151–174. 10.1515/JAA.2001.151

Butnariu D, Reich S, Zaslavski AJ: Weak convergence of orbits of nonlinear operators in reflexive Banach spaces. Numer Funct Anal Optim 2003, 24: 489–508. 10.1081/NFA-120023869

Censor Y, Reich S: Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization. Optimization 1996, 37: 323–339. 10.1080/02331939608844225

Alber YI: Metric and generalized projection operators in Banach spaces: properties and applications. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. In Lecture Notes in Pure and Appl Math. Volume 178. Dekker, New York; 1996:15–50.

Matsushita S, Takahashi W: Weak and strong convergence theorems for relatively nonexpansive mappings in Banach spaces. Fixed Point Theory Appl 2004,2004(1):37–47.

Jung JS: Strong convergence theorems for multivalued nonexpansive nonself-mappings in Banach spaces. Nonlinear Anal 2007, 66: 2345–2354. 10.1016/j.na.2006.03.023

Shahzad N, Zegeye H: Strong convergence results for nonself multimaps in Banach spaces. Proc Am Math Soc 2008, 136: 539–548.

Shahzad N, Zegeye H: On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces. Nonlinear Anal 2009, 71: 838–844. 10.1016/j.na.2008.10.112

Song Y, Wang H: Convergence of iterative algorithms for multivalued mappings in Banach spaces. Nonlinear Anal 2009, 70: 1547–1556. 10.1016/j.na.2008.02.034