WaaL of Pseudomonas aeruginosa utilizes ATP in in vitro ligation of O antigen onto lipid A‐core

Molecular Microbiology - Tập 65 Số 5 - Trang 1345-1359 - 2007
Priyanka D. Abeyrathne1, Joseph S. Lam1
1Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada

Tóm tắt

Summary waaL has been implicated as the gene that encodes the O‐antigen ligase. To date, in vitro biochemical evidence to prove that WaaL possesses ligase activity has been lacking due to the difficulty of purifying WaaL and unavailability of substrates. Here we describe the purification of WaaL, a membrane protein with 11 potential transmembrane segments from Pseudomonas aeruginosa, and the development of an in vitro O‐antigen ligase assay. WaaL was expressed in a P. aeruginosa wbpL knockout strain, which is defective in its initial glycosyltransferase for O‐antigen biosynthesis. This approach allowed the purification of WaaL without contaminating O‐antigen‐undecaprenol‐phosphate (Und‐P) molecules. Purified WaaL resolved to a monomer (35 kDa) and a dimer (70 kDa) band in SDS‐PAGE. The substrates for the O‐antigen ligase assay, O‐antigen‐Und‐P and lipid A‐core were prepared from a waaL mutant. ATP at 2–4 mM is optimum for the O‐ligase activity, and ATP hydrolysis by WaaL follows Michaelis–Menten kinetics. Site‐directed mutagenesis analysis indicated that the periplasmic loop region of WaaL is important for ligase activity. A waaL mutant of P. aeruginosa could not be cross‐complemented by waaL of Escherichia coli, which suggested that each of these proteins has specificity for its cognate core oligosaccharide.

Từ khóa


Tài liệu tham khảo

10.1139/W07-007

10.1128/JB.187.9.3002-3012.2005

10.1038/sj.emboj.7601024

Ausbel F., 1997, Short Protocols in Molecular Biology, 2‐11

10.1093/nar/gki034

Burrows L.L., 1999, Effect of wzx (rfbX) mutations on A‐band and B‐band lipopolysaccharide biosynthesis in Pseudomonas aeruginosa O5, J Bacteriol, 181, 973, 10.1128/JB.181.3.973-980.1999

10.1128/jb.179.5.1482-1489.1997

10.1074/jbc.M502140200

10.1016/0003-2697(88)90002-4

10.1046/j.1462-2920.2002.00288.x

10.1111/j.1432-1033.1970.tb00276.x

10.1016/S0014-5793(03)01106-2

Engler M., 1982, In the Enzymes

10.1111/j.1432-1033.1993.tb17796.x

10.1074/jbc.274.49.35129

10.1128/jcm.28.12.2627-2631.1990

10.1128/mr.60.3.539-574.1996

Hancock R.E., 1979, Outer membrane of Pseudomonas aeruginosa: heat‐2‐mercaptoethanol‐modifiable proteins, J Bacteriol, 140, 902, 10.1128/jb.140.3.902-910.1979

10.1074/jbc.273.15.8849

Hinkle D.C., 1975, Bacteriophage T7 deoxyribonucleic acid replication in vitro. Purification and properties of the gene 4 protein of bacteriophage T7, J Biol Chem, 250, 5523, 10.1016/S0021-9258(19)41213-1

10.1128/JB.154.1.269-277.1983

10.1016/0076-6879(93)17067-F

10.1074/jbc.M401366200

10.1093/clinids/14.2.403

10.1111/j.1365-2958.1995.tb02419.x

10.1016/0014-5793(94)01124-9

10.1016/0378-1119(93)90533-9

10.1128/jb.173.22.7151-7163.1991

10.1016/0378-1119(95)00124-O

10.1002/jms.288

10.1111/j.1574-6968.1991.tb04895.x

10.1073/pnas.80.5.1159

10.1021/bi00469a001

10.1016/0168-9525(93)90067-R

10.1128/jb.179.15.4713-4724.1997

10.1046/j.1365-2958.1998.00871.x

10.1128/MMBR.63.3.523-553.1999

10.1046/j.1432-1327.1998.2550673.x

10.1016/S0014-5793(03)01148-7

10.1074/jbc.M501259200

10.1016/j.sbi.2004.07.007

10.1042/bj1590457

Sonnhammer E.L., 1998, A hidden Markov model for predicting transmembrane helices in protein sequences, Proc Int Conf Intell Syst Mol Biol, 6, 175

10.1002/j.1460-2075.1982.tb01276.x

Ward A., 2000, Membrane Transport – A Practical Approach

10.1016/0378-1119(94)90237-2

10.1016/S0966-842X(00)88917-9

10.1006/jmbi.1993.1106